7,664 research outputs found

    How to protect estuaries in Durham, NH

    Get PDF
    Estuaries are some of the most diverse and fragile ecosystems on our planet. All over the nation, along the coastal states, half of the wetlands, about 55 million acres, have been destroyed (“Habitat Loss Nationwide,” n.d.). Most of these wetlands get Dutton 3 cleared and drained for development, agriculture, etc. In the estuaries located in the Gulf of Maine, development has doubled in the last forty years in the lower watershed (“Habitat Loss Nationwide,” n.d.). This has resulted in an increase in population and impervious surfaces, which correlates with the negative impacts to the watershed, such as runoff and sedimentation (National Research Council, 1987). Other factors have contributed to the degradation of the estuaries in the Piscataqua region such as sealevel rise and an increase in fertilizer use (citations). Some changes have been made to protect these estuaries, however, solving the cumulative impacts need to be included in the protection. Each individual activity is not independent of each other. Their activities work together to decrease the productivity and health of the estuaries. We have policies that have been created, and zoning that has been changed to improve estuaries, however, we need to take that next step forward to fill in the gaps. The goal of this paper is to analyze the current policies and programs, identify the gaps to improve and enhance the programs to be in line with the longstanding ideals of protection and conservation of Durham’s estuaries

    Extensive horizontal gene transfer in cheese-associated bacteria.

    Get PDF
    Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that HGT is prevalent in cheese rind microbiomes, and that identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities

    A Genomic Point Mutation in the Extracellular Domain of the Thyrotropin Receptor in Patients with Graves’ Ophthalmopathy

    Get PDF
    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves' ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves' disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, we have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. We suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties

    Spin-flop and antiferromagnetic phases of the ferromagnetic half-twist ladder compounds Ba3Cu3In4O12 and Ba3Cu3Sc4O12

    Full text link
    The title compounds have dominant ferromagnetic (FM) exchange interactions within one-dimensional (1D) half-twist ladders of s =1/2 Cu2^{+} ions and antiferromagnetic(AFM) interactions between ladders, leading to ordered 3D phases at temperatures below 20K. Here we show that a microscopic 1D model of the paramagnetic (PM) phase combined with a phenomenological model based on sublattice magnetization describes the observed temperature and field dependent magnetism. The model identifies AFM, spin-flop (SF) and PM phases whose boundaries have sharp features in the experimental magnetization M(T,H) and specific heat CP(T,H). Exact diagonalization (ED) of the 1D model, possible for 24 spins due to special structural features of half-twist ladders, yields the magnetization and spin susceptibility of the PM phase. AFM interactions between ladders are included at the mean-field level using the field, HAF, obtained from modeling the ordered phases. Isotropic exchange J1 = -135K and g-tensor g = 2.1 within ladders, plus exchange and anisotropy fields HAF and HA, describe the ordered phases, and are almost quantitative for the PM phase.Comment: 21 pages,9 figures and accepted in Journal of Physics: Condensed Matte

    Non-contact ultrasonic detection of angled surface defects

    Get PDF
    Non-destructive testing is an important technique, and improvements are constantly needed. Surface defects in metals are not necessarily confined to orientations normal to the sample surface; however, much of the previous work investigating the interaction of ultrasonic surface waves with surface-breaking defects has assumed cracks inclined at 90° to the surface. This paper explores the interaction of Rayleigh waves with cracks which have a wide range of angles and depths relative to the surface, using a non-contact laser generation and detection system. Additional insight is acquired using a 3D model generated using finite element method software. A clear variation of the reflection and transmission coefficients with both crack angle and length is found, in both the out-of-plane and in-plane components. The 3D model is further used to understand the contributions of different wavemodes to B-Scans produced when scanning a sample, to enable understanding of the reflection and transmission behaviour, and help identify angled defects. Knowledge of these effects is essential to correctly gauge the severity of surface cracking

    Scanning laser source and scanning laser detection techniques for different surface crack geometries

    Get PDF
    Standard test samples typically contain simulated defects such as slots machined normal to the surface. However, real defects will not always propagate in this manner; for example, rolling contact fatigue on rails propagates at around 25º to the surface, and corrosion cracking can grow in a branched manner. Therefore, there is a need to understand how ultrasonic surface waves interact with different crack geometries. We present measurements of machined slots inclined at an angle to the surface normal, or with simple branched geometries, using laser ultrasound. Recently, Rayleigh wave enhancements observed when using the scanning laser source technique, where a generation laser is scanned along a sample, have been highlighted for their potential in detecting surface cracks. We show that the enhancement measured with laser detector scanning can give a more significant enhancement when different crack geometries are considered. We discuss the behaviour of an incident Rayleigh wave in the region of an angled defect, and consider mode-conversions which lead to a very large enhancement when the detector is close to the opening of a shallow defect. This process could be used in characterising defects, as well as being an excellent fingerprint of their presence

    A multi-mode model of a non-classical atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light

    Full text link
    We examine the properties of an atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light. We introduce a method which allows us to model the full multimode dynamics of the squeezed optical field and the outcoupled atoms. We show that for experimentally reasonable parameters that the quantum statistics of the optical field are almost completely transferred to the outcoupled atoms, and investigate the robustness to the coupling strength and the two-photon detuning.Comment: 6 pages, 4 figures. Accepted to Laser physics letter
    corecore