164 research outputs found

    Deep learning for species identification of modern and fossil rodent molars

    Get PDF
    Reliable identification of species is a key step to assess biodiversity. In fossil and archaeological contexts, genetic identifications remain often difficult or even impossible and morphological criteria are the only window on past biodiversity. Methods of numerical taxonomy based on geometric morphometric provide reliable identifications at the specific and even intraspecific levels, but they remain relatively time consuming and require expertise on the group under study. Here, we explore an alternative based on computer vision and machine learning. The identification of three rodent species based on pictures of their molar tooth row constituted the case study. We focused on the first upper molar in order to transfer the model elaborated on modern, genetically identified specimens to isolated fossil teeth. A pipeline based on deep neural network automatically cropped the first molar from the pictures, and returned a prediction regarding species identification. The deep-learning approach performed equally good as geometric morphometrics and, provided an extensive reference dataset including fossil teeth, it was able to successfully identify teeth from an archaeological deposit that was not included in the training dataset. This is a proof-of-concept that such methods could allow fast and reliable identification of extensive amounts of fossil remains, often left unstudied in archaeological deposits for lack of time and expertise. Deep-learning methods may thus allow new insights on the biodiversity dynamics across the last 10.000 years, including the role of humans in extinction or recent evolution

    Evolving structures of star-forming clusters

    Full text link
    Understanding the formation and evolution of young star clusters requires quantitative statistical measures of their structure. We investigate the structures of observed and modelled star-forming clusters. By considering the different evolutionary classes in the observations and the temporal evolution in models of gravoturbulent fragmentation, we study the temporal evolution of the cluster structures. We apply different statistical methods, in particular the normalised mean correlation length and the minimum spanning tree technique. We refine the normalisation of the clustering parameters by defining the area using the normalised convex hull of the objects and investigate the effect of two-dimensional projection of three-dimensional clusters. We introduce a new measure Îľ\xi for the elongation of a cluster. It is defined as the ratio of the cluster radius determined by an enclosing circle to the cluster radius derived from the normalised convex hull. The mean separation of young stars increases with the evolutionary class, reflecting the expansion of the cluster. The clustering parameters of the model clusters correspond in many cases well to those from observed ones, especially when the Îľ\xi values are similar. No correlation of the clustering parameters with the turbulent environment of the molecular cloud is found, indicating that possible influences of the environment on the clustering behaviour are quickly smoothed out by the stellar velocity dispersion. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.Comment: 11 pages, 10 figures, accepted by A&A; slightly modified according to the referee repor

    Cellular Array Morphology During Directional Solidification

    Get PDF
    Cellular array morphology has been examined in the shallow cell, deep cell, and cell-to-dendrite transition regime in Pb-2.2 wt pct Sb and Al-4.1 wt pct Cu alloy single-crystal samples that were directionally solidified along [100]. Statistical analysis of the cellular spacing distribution on transverse sections has been carried out using minimum spanning tree (MST), Voronoi polygons, radial distribution factor, and fast Fourier transform (FFT) techniques. The frequency distribution of the number of nearest neighbors and the MST parameters suggest that the arrangement of cells may be visualized as a hexagonal tessellation with superimposed 50 pct random noise. However, the power spectrum of the Fourier transform of the cell centers shows a diffused single-ring pattern that does not agree with the power spectrum from the hexagonal tessellation having a 50 pct superimposed random (uniformly distributed or Gaussian) noise. The radial distribution factor obtained from the cells is similar to that of liquids. An overall steady-state distribution in terms of the mean primary spacing is achieved after directional solidification of about three mushy-zone lengths. However, the process of nearest-neighbor interaction continues throughout directional solidification, as indicated by about 14 pct of the cells undergoing submerging in the shallow cell regime or by an increasing first and second nearest-neighbor ordering along the growth direction for the cells at the cell-to-dendrite transition. The nature of cell distribution in the Al-Cu alloy appears to be the same as that in the Pb-Sb. The ratio between the upper and lower limits of the primary spacing, as defined by the largest and the smallest 10 pct of the population, respectively, is constant: 1.43 +/- 0.11. It does not depend upon the solidification processing conditions

    Primary Dendrite Distribution and Disorder During Directional Solidification of Pb-Sb Alloys

    Get PDF
    Pb-2.2 wt pct Sb and Pb-5.8 wt pet Sb alloys have been directionally solidified from a single-crystal seed with its [100] orientation parallel to the growth direction, to examine the primary dendrite distribution and disorder of the dendrite arrays. The dendrite distribution and ordering have been investigated using analysis techniques such as the Gauss-amplitude fit to the frequency distribution of nearest and higher-order spacings, minimum spanning tree (MST), Voronoi polygon, and Fourier transform (FT) of the dendrite centers. Since the arrangement of dendrites is driven by the requirement to accommodate side-branch growth along the (100) directions, the FT images of the fully developed dendrite centers contain spots which indicate this preferred alignment. A directional solidification distance of about three mushy-zone lengths is sufficient to ensure a steady-state dendritic array, in terms of reaching a constant mean primary spacing. However, local dendrite ordering continues throughout the directional solidification process. The interdendritic convection not only decreases the mean primary spacing, it also makes the dendrite array more disordered and reduces the ratio of the upper and lower spacing limits, as defined by the largest 5 pct and the smallest 5 pct of the population
    • …
    corecore