25 research outputs found

    Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird

    Get PDF
    © 2018, The Author(s). Under climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route, possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness. Bar-tailed godwits migrating from West Africa to the Siberian Arctic reduce refuelling time at their European staging site and thus maintain a close match between breeding and tundra phenology. Annual survival probability decreases with shorter refuelling times, but correlates positively with refuelling rate, which in turn is correlated with food abundance in the staging area. This chain of effects implies that conditions in the temperate zone determine the ability of godwits to cope with climate-related changes in the Arctic

    Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding

    Get PDF
    Long-distance migrants are assumed to be more time-limited during the pre-breeding season compared to the post-breeding season. Although breeding-related time constraints may be absent post-breeding, additional factors such as predation risk could lead to time constraints that were previously underestimated. By using an automated radio telemetry system, we compared pre- and post-breeding movements of long-distance migrant shorebirds on a continent-wide scale. From 2014 to 2016, we deployed radio transmitters on 1,937 individuals of 4 shorebird species at 13 sites distributed across North America. Following theoretical predictions, all species migrated faster during the pre-breeding season, compared to the post-breeding season. These differences in migration speed between seasons were attributable primarily to longer stopover durations in the post-breeding season. In contrast, and counter to our expectations, all species had higher airspeeds during the post-breeding season, even after accounting for seasonal differences in wind. Arriving at the breeding grounds in good body condition is beneficial for survival and reproductive success and this energetic constraint might explain why airspeeds are not maximised in the pre-breeding season. We show that the higher airspeeds in the post-breeding season precede a wave of avian predators, which could suggest that migrant shorebirds show predation-minimizing behaviour during the post-breeding season. Our results reaffirm the important role of time constraints during northward migration and suggest that both energy and predation-risk constrain migratory behaviour during the post-breeding season

    Mallards Feed Longer to Maintain Intake Rate under Competition on a Natural Food Distribution

    No full text
    Animals foraging in groups may benefit from a faster detection of food and predators, but competition by conspecifics may reduce intake rate. Competition may also alter the foraging behaviour of individuals, which can be influenced by dominance status and the way food is distributed over the environment. Many studies measuring the effects of competition and dominance status have been conducted on a uniform or highly clumped food distribution, while in reality prey distributions are often in-between these two extremes. The few studies that used a more natural food distribution only detected subtle effects of interference and dominance. We therefore conducted an experiment on a natural food distribution with focal mallards Anas platyrhynchos foraging alone and in a group of three, having a dominant, intermediate or subordinate dominance status. In this way, the foraging behaviour of the same individual in different treatments could be compared, and the effect of dominance was tested independently of individual identity. The experiment was balanced using a 4 x 4 Latin square design, with four focal and six non-focal birds. Individuals in a group achieved a similar intake rate (i.e. number of consumed seeds divided by trial length) as when foraging alone, because of an increase in the proportion of time feeding (albeit not significant for subordinate birds). Patch residence time and the number of different patches visited did not differ when birds were foraging alone or in a group. Besides some agonistic interactions, no differences in foraging behaviour between dominant, intermediate and subordinate birds were measured in group trials. Possibly group-foraging birds increased their feeding time because there was less need for vigilance or because they increased foraging intensity to compensate for competition. This study underlines that a higher competitor density does not necessarily lead to a lower intake rate, irrespective of dominance status

    Mallards Feed Longer to Maintain Intake Rate under Competition on a Natural Food Distribution

    No full text
    Animals foraging in groups may benefit from a faster detection of food and predators, but competition by conspecifics may reduce intake rate. Competition may also alter the foraging behaviour of individuals, which can be influenced by dominance status and the way food is distributed over the environment. Many studies measuring the effects of competition and dominance status have been conducted on a uniform or highly clumped food distribution, while in reality prey distributions are often in-between these two extremes. The few studies that used a more natural food distribution only detected subtle effects of interference and dominance. We therefore conducted an experiment on a natural food distribution with focal mallards Anas platyrhynchos foraging alone and in a group of three, having a dominant, intermediate or subordinate dominance status. In this way, the foraging behaviour of the same individual in different treatments could be compared, and the effect of dominance was tested independently of individual identity. The experiment was balanced using a 4×4 Latin square design, with four focal and six non-focal birds. Individuals in a group achieved a similar intake rate (i.e. number of consumed seeds divided by trial length) as when foraging alone, because of an increase in the proportion of time feeding (albeit not significant for subordinate birds). Patch residence time and the number of different patches visited did not differ when birds were foraging alone or in a group. Besides some agonistic interactions, no differences in foraging behaviour between dominant, intermediate and subordinate birds were measured in group trials. Possibly group-foraging birds increased their feeding time because there was less need for vigilance or because they increased foraging intensity to compensate for competition. This study underlines that a higher competitor density does not necessarily lead to a lower intake rate, irrespective of dominance status

    Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica: time minimizers accept greater predation danger than energy minimizers

    No full text
    Different spatial distributions of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been assigned to two subspecies of Bar-tailed Godwits Limosa lapponica that use the European Wadden Sea during northward migration. At the study area on Terschelling, we recorded feeding site selection, time budgets and intake rates (prey/min) in the period that both lapponica (energy minimizer) and taymyrensis (time minimizer) subspecies were present (late April till the end of May 2007). Prey availability (number of prey/m2) was negatively correlated to the distance from cover. Based on sightings of colour-ringed Bar-tailed Godwits, taymyrensis was foraging closer to cover, and for a higher proportion of time than lapponica (67% vs. 33%). During the high tide period taymyrensis was also foraging on inland coastal meadows. Moreover, taymyrensis was more vigilant than lapponica, whereas lapponica showed more resting and preening behaviour. Lapponica had a higher instantaneous intake rate, but taymyrensis had a higher overall intake rate and the birds were more successful in taking larger prey items than lapponica. Supposedly, due to the increased foraging time and additional foraging on the inland meadows, the time-minimizing taymyrensis achieved a higher fuel deposition rate than lapponica. Taymyrensis shifted towards food-rich areas, apparently accepting higher predation risks, whereas energy-minimizing lapponica avoided predation danger by foraging further from cove

    An additional field method to sex adult Barn Swallows during the non-breeding season in Zambia: white spot length in the outer tail feather

    No full text
    Adult Barn Swallows Hirundo rustica exhibit strong sexual size dimorphism in the length of the outermost tail feathers, which are longer in males compared with females. This trait is traditionally used to sex adult Barn Swallows in the field. However, due to the wear and breakage of the tips of the outer tail feather and tail moult during the non-breeding season, sexing becomes unreliable or even impossible. We therefore tested whether the length of the white spot on the outer tail feather is sexually dimorphic, and whether it can be used as an additional sexing method for adult Barn Swallows. The white spot length was sexually dimorphic, based on DNA analysis of 101 adult individuals caught at their roost during the non-breeding season in Zambia. Accuracy in sex determination of 95% could be obtained by classifying individuals with a white spot length 29.5 mm as males. When applying the length of the white spot as an additional method to sex adult Barn Swallows on all birds caught in Zambia during the study period (N = 759), the percentage of birds that could successfully be sexed increased to more than 55%. Therefore we emphasise the importance of measuring the white spot length in addition to the tail fork depth and tail length to sex adult Barn Swallows in the non-breeding season

    An additional field method to sex adult Barn Swallows during the non-breeding season in Zambia: white spot length in the outer tail feather

    No full text
    Adult Barn Swallows Hirundo rustica exhibit strong sexual size dimorphism in the length of the outermost tail feathers, which are longer in males compared with females. This trait is traditionally used to sex adult Barn Swallows in the field. However, due to the wear and breakage of the tips of the outer tail feather and tail moult during the non-breeding season, sexing becomes unreliable or even impossible. We therefore tested whether the length of the white spot on the outer tail feather is sexually dimorphic, and whether it can be used as an additional sexing method for adult Barn Swallows. The white spot length was sexually dimorphic, based on DNA analysis of 101 adult individuals caught at their roost during the non-breeding season in Zambia. Accuracy in sex determination of 95% could be obtained by classifying individuals with a white spot length 29.5 mm as males. When applying the length of the white spot as an additional method to sex adult Barn Swallows on all birds caught in Zambia during the study period (N = 759), the percentage of birds that could successfully be sexed increased to more than 55%. Therefore we emphasise the importance of measuring the white spot length in addition to the tail fork depth and tail length to sex adult Barn Swallows in the non-breeding season
    corecore