484 research outputs found

    Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal

    Full text link
    We use Monte Carlo simulations and free-energy techniques to show that binary solutions of penta- and hexavalent two-dimensional patchy particles can form thermodynamically stable quasicrystals even at very narrow patch widths, provided their patch interactions are chosen in an appropriate way. Such patchy particles can be thought of as a coarse-grained representation of DNA multi-arm `star' motifs, which can be chosen to bond with one another very specifically by tuning the DNA sequences of the protruding arms. We explore several possible design strategies and conclude that DNA star tiles that are designed to interact with one another in a specific but not overly constrained way could potentially be used to construct soft quasicrystals in experiment. We verify that such star tiles can form stable dodecagonal motifs using oxDNA, a realistic coarse-grained model of DNA

    Close-Packing of Clusters: Application to Al_100

    Get PDF
    The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from relatively small cluster sizes. Calculations also show that several other close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure

    Surface-reconstructed Icosahedral Structures for Lead Clusters

    Full text link
    We describe a new family of icosahedral structures for lead clusters. In general, structures in this family contain a Mackay icosahedral core with a reconstructed two-shell outer-layer. This family includes the anti-Mackay icosahedra, which have have a Mackay icosahedral core but with most of the surface atoms in hexagonal close-packed positions. Using a many-body glue potential for lead, we identify two icosahedral structures in this family which have the lowest energies of any known structure in the size range from 900 to 15000 lead atoms. We show that these structures are stabilized by a feature of the many-body glue part of the interatomic potential.Comment: 9 pages, 8 figure

    Saddle Points and Dynamics of Lennard-Jones Clusters, Solids and Supercooled Liquids

    Full text link
    The properties of higher-index saddle points have been invoked in recent theories of the dynamics of supercooled liquids. Here we examine in detail a mapping of configurations to saddle points using minimization of E2|\nabla E|^2, which has been used in previous work to support these theories. The examples we consider are a two-dimensional model energy surface and binary Lennard-Jones liquids and solids. A shortcoming of the mapping is its failure to divide the potential energy surface into basins of attraction surrounding saddle points, because there are many minima of E2|\nabla E|^2 that do not correspond to stationary points of the potential energy. In fact, most liquid configurations are mapped to such points for the system we consider. We therefore develop an alternative route to investigate higher-index saddle points and obtain near complete distributions of saddles for small Lennard-Jones clusters. The distribution of the number of stationary points as a function of the index is found to be Gaussian, and the average energy increases linearly with saddle point index in agreement with previous results for bulk systems.Comment: 14 pages, 7 figure

    Identifying "communities" within energy landscapes

    Full text link
    Potential energy landscapes can be represented as a network of minima linked by transition states. The community structure of such networks has been obtained for a series of small Lennard-Jones clusters. This community structure is compared to the concept of funnels in the potential energy landscape. Two existing algorithms have been used to find community structure, one involving removing edges with high betweenness, the other involving optimization of the modularity. The definition of the modularity has been refined, making it more appropriate for networks such as these where multiple edges and self-connections are not included. The optimization algorithm has also been improved, using Monte Carlo methods with simulated annealing and basin hopping, both often used successfully in other optimization problems. In addition to the small clusters, two examples with known heterogeneous landscapes, LJ_13 with one labelled atom and LJ_38, were studied with this approach. The network methods found communities that are comparable to those expected from landscape analyses. This is particularly interesting since the network model does not take any barrier heights or energies of minima into account. For comparison, the network associated with a two-dimensional hexagonal lattice is also studied and is found to have high modularity, thus raising some questions about the interpretation of the community structure associated with such partitions.Comment: 13 pages, 11 figure

    ADOPTION OF BEST MANAGEMENT PRACTICES IN STOCKER CATTLE PRODUCTION

    Get PDF
    This study identifies current production and management practices of Oklahoma stocker cattle producers and analyzes factors affecting the adoption of best management practices (BMPs) using chi-square analysis. Results reveal that factors influencing the adoption of BMPs are operation size, dependency upon income from the operation, and specialization in stocker production.cattle, stockers, management, production, Livestock Production/Industries,

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte

    KEY FACTORS CONTRIBUTING TO COW/CALF COSTS, PROFITS AND PRODUCTION

    Get PDF
    In this study, cow/calf Standardized Performance Analysis (SPA) data for Texas, Oklahoma, and New Mexico are used to analyze how total cost, production, and profitability are affected by management choices. Total cost is the financial cost associated with raising a calf through the weaning stage; profits are measured using the rate of return on assets; production is determined by pounds weaned per exposed female. Variables such as herd size, pounds of feed fed, calving percentage, death loss, length of breeding season and investment in asset groups are used in regressions. Key factors contributing to a cow/calf operation's costs, production, and profitability are identified.Livestock Production/Industries,

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure

    Vibrations of closed-shell Lennard-Jones icosahedral and cuboctahedral clusters and their effect on the cluster ground state energy

    Full text link
    Vibrational spectra of closed shell Lennard-Jones icosahedral and cuboctahedral clusters are calculated for shell numbers between 2 and 9. Evolution of the vibrational density of states with the cluster shell number is examined and differences between icosahedral and cuboctahedral clusters described. This enabled a quantum calculation of quantum ground state energies of the clusters in the quasiharmonic approximation and a comparison of the differences between the two types of clusters. It is demonstrated that in the quantum treatment, the closed shell icosahedral clusters binding energies differ from those of cuboctahedral clusters more than is the case in classical treatment
    corecore