3,395 research outputs found
Novel Properties of Massive Higher Spin Fields
I outline a series of results obtained in collaboration with A. Waldron on
the properties of massive higher (s>1) spin fields in cosmological, constant
curvature, backgrounds and the resulting unexpected qualitative effects on
their degrees of freedom and unitarity properties. The dimensional parameter
\L extends the flat space m-line to a (m^2,\L) "phase" plane in which these
novel phenomena unfold. In this light, I discuss a possible partial
resurrection of deSitter supergravity. I will also exhibit the well-known
causality problems of coupling these systems to gravity and, for complex
fields, to electromagnetism, systematizing some of the occasionally
misunderstood obstacles to interactions, particularly for s = 3/2 and 2.Comment: 9 pages, 1 figure. Invited talk at "Renormalization Group and
Anomalies in Gravity and Cosmology", Ouro Preto, Brazil, March 17-23, 200
Energy in Topologically Massive Gravity
We define conserved gravitational charges in -cosmologically extended-
topologically massive gravity, exhibit them in surface integral form about
their de-Sitter or flat vacua and verify their correctness in terms of two
basic types of solution.Comment: 6 page
No Bel-Robinson Tensor for Quadratic Curvature Theories
We attempt to generalize the familiar covariantly conserved Bel-Robinson
tensor B_{mnab} ~ R R of GR and its recent topologically massive third
derivative order counterpart B ~ RDR, to quadratic curvature actions. Two very
different models of current interest are examined: fourth order D=3 "new
massive", and second order D>4 Lanczos-Lovelock, gravity. On dimensional
grounds, the candidates here become B ~ DRDR+RRR. For the D=3 model, there
indeed exist conserved B ~ dRdR in the linearized limit. However, despite a
plethora of available cubic terms, B cannot be extended to the full theory. The
D>4 models are not even linearizable about flat space, since their field
equations are quadratic in curvature; they also have no viable B, a fact that
persists even if one includes cosmological or Einstein terms to allow
linearization about the resulting dS vacua. These results are an unexpected, if
hardly unique, example of linearization instability.Comment: published versio
Birkhoff for Lovelock Redux
We show succinctly that all metric theories with second order field equations
obey Birkhoff's theorem: their spherically symmetric solutions are static.Comment: Submitted to CQ
Stability of Massive Cosmological Gravitons
We analyze the physics of massive spin 2 fields in (A)dS backgrounds and
exhibit that: The theory is stable only for masses m^2 >= 2\Lambda/3, where the
conserved energy associated with the background timelike Killing vector is
positive, while the instability for m^2<2\Lambda/3 is traceable to the helicity
0 energy. The stable, unitary, partially massless theory at m^2=2\Lambda/3
describes 4 propagating degrees of freedom, corresponding to helicities
(+/-2,+/-1) but contains no 0 helicity excitation.Comment: 13 pages, LaTeX, version to appear in Phys. Lett.
Dual descriptions of spin two massive particles in via master actions
In the first part of this work we show the decoupling (up to contact terms)
of redundant degrees of freedom which appear in the covariant description of
spin two massive particles in . We make use of a master action which
interpolates, without solving any constraints, between a first, second and
third order (in derivatives) self-dual model. An explicit dual map between
those models is derived. In our approach the absence of ghosts in the third
order self-dual model, which corresponds to a quadratic truncation of
topologically massive gravity, is due to the triviality (no particle content)
of the Einstein-Hilbert action in . In the second part of the work, also
in , we prove the quantum equivalence of the gauge invariant sector of a
couple of self-dual models of opposite helicities (+2 and -2) and masses
and to a generalized self-dual model which contains a quadratic
Einstein-Hilbert action, a Chern-Simons term of first order and a Fierz-Pauli
mass term. The use of a first order Chern-Simons term instead of a third order
one avoids conflicts with the sign of the Einstein-Hilbert action.Comment: title and abstract slightly modified, 3 references added, comments on
interactions include
First-order Formalism and Odd-derivative Actions
In this pedagogical note, we discuss obstacles to the usual Palatini
formulations of gauge and gravity theories in presence of odd-derivative order,
Chern-Simons, terms.Comment: 4 pages. Dedicated to Rafael Sorkin on his 60th Birthda
A note on matter covariantization for gravity coupling
Covariantization is of course required for initially flat space matter to
couple consistently to GR; here I show in detail for concrete systems how it
follows in the same physical way as that deriving GR itself from its initial
free-field form.Comment: Published version, typos correcte
- …
