65 research outputs found

    Analysis of Air Traffic Controllers Decisions

    Get PDF
    International audienceThis paper presents an approach based on a multiple criteria decision making methodology (MCDM) to analyse the decisions of Air Traffic Controllers. This study will allow to model some tools able to assist the controllers in their tasks and particularly able to help them to assume the ceaseless increase of Air Traffic. Currently the platform AMANDA assists controllers on only one sector of control. This platform was very pleasant welcome, and we wish to extend these principles to adjacent sectors, and thus include tool to help the cooperation between adjacent controllers. This analysis is composed of three main points. First it is necessary to determine the decision making process of controllers. The second point consists of the application of the MCDM which guide all the study. And finally a repertory grid technique is applied in order to support the operational aspect of MCDM and to support the interviews. We begin this paper by a presentation of Air traffic Control and the problematic, we present then AMANDA and its principles, and the objectives for the new version. In a third part we describe the approach developed and a real example of its application, the results and analyses that we can deduce of this first grid are also presented. These results must be, of course, confirmed and validated by the controllers

    Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon

    Get PDF
    In most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues. We aimed to address the hypothesis that the steroidal system and in particular 20-hydroxyecdysone (20E), the main insect steroid hormone, might also be involved in this olfactory plasticity. Therefore, we first cloned the nuclear ecdysteroid receptor EcR (AipsEcR) and its partner Ultraspiracle (AipsUSP) of A. ipsilon, the expression of which increased concomitantly with age in ALs. Injection of 20E into young sexually immature males led to an increase in both responsiveness to sex pheromone and amount of AipsEcR and AipsUSP in their ALs. Conversely, the behavioral response decreased in older, sexually mature males after injection of cucurbitacin B (CurB), an antagonist of the 20E/EcR/USP complex. Also, the amount of AipsEcR and AipsUSP significantly declined after treatment with CurB. These results suggest that 20E is involved in the expression of sexual behavior via the EcR/USP signaling pathway, probably acting on central pheromone processing in A. ipsilon

    Choice, sorting and ranking in aerial conflict management

    Get PDF
    International audienceIn the Air Traffic control, many decisions must be taken, quickly. Due to the increase of traffic, these decisions are more and more numerous. It is possible to propose some assistance tools to air traffic controllers in order to help them to make decisions. For that purpose we need to understand how the controllers make these decisions. This paper proposes a knowledge acquisition approach composed of three steps: an analysis of the decision-making process, a multiple criteria methodology, and interviews in order to obtain information, and to develop models. The last part of this paper presents the results we expect to obtain with appropriate interviews and analyse

    The transcription factor Kruppel homolog 1 is linked to the juvenile hormone-dependent maturation of sexual behavior in the male moth, Agrotis ipsilon

    Get PDF
    In the male moth, Agrotis ipsilon, the behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. Although JH has been shown to control this age-dependent plasticity, the underlying signaling pathway remains obscure. In this context, we cloned a full cDNA encoding the Kruppel homolog 1 transcription factor (AipsKr-h1) of A. ipsilon, which was found to be predominantly expressed in ALs, where its amount increased concomitantly with age and sex pheromone responses. Conversely, the expression of AipsKr-h1 protein in the antenna was age-independent. Moreover, the administration of JH in immature males or fluvastatin, an inhibitor of JH biosynthesis, in mature males induced an increase or a decline of the AipsKr-h1 protein level in ALs, respectively. This effect was suppressed with a combined injection of fluvastatin and JH. Our results showed that Aipskr-h1 is a JH-upregulated gene that might mediate JH action on central pheromone processing, modulating sexual behavior in A. ipsilon

    Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect

    Get PDF
    Most animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL). Evidence is now accumulating that modulation of sex-linked behavioral output occurs through neuronal plasticity via the action of hormones and/or catecholamines. A G-protein-coupled receptor (GPCR) binding to 20-hydroxyecdysone, the main insect steroid hormone, and dopamine, has been identified in Drosophila (DmDopEcR), and was suggested to modulate neuronal signaling. In the male moth Agrotis ipsilon, the behavioral and central nervous responses to pheromone are age-dependent. To further unveil the mechanisms of this olfactory plasticity, we searched for DopEcR and tested its potential role in the behavioral response to sex pheromone in A. ipsilon males. Our results show that A. ipsilon DopEcR (named AipsDopEcR) is predominantly expressed in the nervous system. The corresponding protein was detected immunohistochemically in the ALs and higher brain centers including the mushroom bodies. Moreover, AipsDopEcR expression increased with age. Using a strategy of RNA interference, we also show that silencing of AipsDopEcR inhibited the behavioral response to sex pheromone in wind tunnel experiments. Altogether our results indicate that this GPCR is involved in the expression of sexual behavior in the male moth, probably by modulating the central nervous processing of sex pheromone through the action of one or both of its ligands

    Synaptotagmin I, a molecular target for steroid hormone signaling controlling the maturation of sexual behavior in an insect

    Get PDF
    As in vertebrates, the insect steroid hormones, especially 20-hydroxyecdysone (20E), initiate and regulate sexual behavior by acting on the central nervous system. This 20E action is, in part, triggered by transcriptional events mediated through the binding of 20E to a heterodimer comprising the ecdysone receptor (EcR) and ultraspiracle (USP). However, to date, our knowledge about this genomic steroid pathway remains incomplete. In moths, males detect female sex pheromones, eliciting stereotyped sexual behavior. In Agrotis ipsilon males, the behavioral response and the neuronal sensitivity to sex pheromone in the olfactory center, the antennal lobe (AL), increase with age. We recently showed that 20E controlled this age-dependent olfactory plasticity via the activation of an EcR/USP-dependent pathway in the AL. Here, we cloned the gene encoding A. ipsilon synaptotagmin I (AisytI), a presynaptic vesicle protein known to act as a calcium sensor in neurotransmitter release. AisytI was expressed in the AL, where its amount increased with age, whereas its knockdown inhibited the sex pheromone-oriented flight of males. 20E administration to males induced AL AisytI expression in a dose-dependent and time-dependent manner. Moreover, A. ipsilon EcR silencing caused decreases in AL AisytI expression and the behavioral response to sex pheromone. Our results show that the synaptotagmin I gene is a target gene for the genomic steroid signaling that controls the expression of insect sexual behavior by acting on central sex pheromone processing. This study thus represents a significant advance in our understanding of the steroid actions that influence neural functions, and thereby behavioral plasticity, in various organisms
    • …
    corecore