334 research outputs found

    First IBEX observations of the terrestrial plasma sheet and a possible disconnection event

    Get PDF
    The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of energetic neutral atoms (ENAs) emitted from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the magnetosheath stagnation region at the nose of the magnetosphere. This study provides the first IBEX images of the ENA emissions from the nightside magnetosphere and plasma sheet. We show images from two IBEX orbits: one that displays typical plasma sheet emissions, which correlate reasonably well with a model magnetic field, and a second that shows a significant intensification that may indicate a near-Earth (similar to 10 R(E) behind the Earth) disconnection event. IBEX observations from similar to 0.5-6 keV indicate the simultaneous addition of both a hot (several keV) and colder (similar to 700 eV) component during the intensification; if IBEX directly observed magnetic reconnection in the magnetotail, the hot component may signify the plasma energization

    Strong tuning of Rashba spin orbit interaction in single InAs nanowires

    Full text link
    A key concept in the emerging field of spintronics is the gate voltage or electric field control of spin precession via the effective magnetic field generated by the Rashba spin orbit interaction. Here, we demonstrate the generation and tuning of electric field induced Rashba spin orbit interaction in InAs nanowires where a strong electric field is created either by a double gate or a solid electrolyte surrounding gate. In particular, the electrolyte gating enables six-fold tuning of Rashba coefficient and nearly three orders of magnitude tuning of spin relaxation time within only 1 V of gate bias. Such a dramatic tuning of spin orbit interaction in nanowires may have implications in nanowire based spintronic devices.Comment: Nano Letters, in pres

    Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer

    Get PDF
    The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon

    Modelling Solar Energetic Neutral Atoms from Solar Flares and CME-driven Shocks

    Full text link
    We examine the production of energetic neutral atoms (ENAs) in solar flares and CME-driven shocks and their subsequent propagation to 1 au. Time profiles and fluence spectra of solar ENAs at 1 au are computed for two scenarios: 1) ENAs are produced downstream at CME-driven shocks, and 2) ENAs are produced at large-scale post-flare loops in solar flares. Both the time profiles and fluence spectra for these two scenarios are vastly different. Our calculations indicate that we can use solar ENAs as a new probe to examine the underlying acceleration process of solar energetic particles (SEPs) and to differentiate the two accelertion sites: large loops in solar flares and downstream of CME-driven shocks, in large SEP events.Comment: 11 pages, updated figures and paper is accepted by Ap

    Signature of a Heliotail Organized by the Solar Magnetic Field and the Role of Nonideal Processes in Modeled IBEX ENA Maps: A Comparison of the BU and Moscow MHD Models

    Get PDF
    Energetic neutral atom (ENA) models typically require post-processing routines to convert the distributions of plasma and H atoms into ENA maps. Here we investigate how two kinetic-MHD models of the heliosphere (the BU and Moscow models) manifest in modeled ENA maps using the same prescription and how they compare with Interstellar Boundary Explorer (IBEX) observations. Both MHD models treat the solar wind as a single-ion plasma for protons, which include thermal solar wind ions, pick-up ions (PUIs), and electrons. Our ENA prescription partitions the plasma into three distinct ion populations (thermal solar wind, PUIs transmitted and ones energized at the termination shock) and models the populations with Maxwellian distributions. Both kinetic-MHD heliospheric models produce a heliotail with heliosheath plasma that is organized by the solar magnetic field into two distinct north and south columns that become lobes of high mass flux flowing down the heliotail; however, in the BU model, the ISM flows between the two lobes at distances in the heliotail larger than 300 au. While our prescription produces similar ENA maps for the two different plasma and H atom solutions at the IBEX-Hi energy range (0.5–6 keV), the modeled ENA maps require a scaling factor of ∼2 to be in agreement with the data. This problem is present in other ENA models with the Maxwellian approximation of multiple ion species and indicates that either a higher neutral density or some acceleration of PUIs in the heliosheath is required

    Neutral Atom Imaging of the Solar Wind‐Magnetosphere‐Exosphere Interaction Near the Subsolar Magnetopause

    Get PDF
    Energetic neutral atoms (ENAs) created by charge‐exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low‐energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low‐energy magnetospheric plasma is not distributed evenly in the outer magnetosphere. Simultaneous images and in situ observations from the Magnetospheric Multiscale (MMS) spacecraft from November 2015 (during the solar cycle declining phase) are used to derive the exospheric density. The ~11–17 cm−3 density at 10 RE is similar to that obtained previously for solar minimum. Thus, these combined results indicate that the exospheric density 10 RE from the Earth may have a weak dependence on solar cycle

    Solution Grown Se/Te Nanowires: Nucleation, Evolution, and The Role of Triganol Te seeds

    Get PDF
    We have studied the nucleation and growth of Se–Te nanowires (NWs), with different morphologies, grown by a chemical solution process. Through systematic characterization of the Se–Te NW morphology as a function of the Te nanocrystallines (NCs) precursor, the relative ratio between Se and Te, and the growth time, a number of significant insights into Se–Te NW growth by chemical solution processes have been developed. Specifically, we have found that: (i) the growth of Se–Te NWs can be initiated from either long or short triganol Te nanorods, (ii) the frequency of proximal interactions between nanorod tips and the competition between Se and Te at the end of short Te nanorods results in V-shaped structures of Se–Te NWs, the ratio between Se and Te having great effect on the morphology of Se–Te NWs, (iii) by using long Te nanorods as seeds, Se–Te NWs with straight morphology were obtained. Many of these findings on Se–Te NW growth can be further generalized and provide very useful information for the rational synthesis of group VI based semiconductor NW compounds

    Charge-to-mass dependence of heavy ion spectral breaks in large gradual solar energetic particle events

    Get PDF
    We fit the ~0.1-500 MeV/nucleon H-Fe spectra in 46 large SEP events surveyed by [1] with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γa and γb ; and break energy E_B . We also calculate the low-energy power-law spectral slope γ1. We find that: 1) γa , γ1, and γb are species-independent within a given SEP event, and the spectra steepen with increasing energy; 2) E_B 's are well ordered by Q/M ratio, and decrease systematically with decreasing Q/M, scaling as (Q/M)^α with α varying between ~0.2-3; 3) α is well correlated with Fe/O at ~0.16-0.23 MeV/nucleon and CME speed; 4) In most events: α 3; and 5) Seven out of nine extreme SEP events (associated with faster CMEs and GLEs) are Fe-rich and have α >1.4 with flat spectra at low and high energies yielding γb -γa <3. The species-independence of γa , γ1, and γb and the systematic Q/M dependence of EB within an event, as well as the range of values for α suggest that the formation of double power-laws in SEP events occurs primarily due to diffusive acceleration at near-Sun CME shocks and not due to scattering in the interplanetary turbulence. In most events, the Q/M-dependence of EB is consistent with the equal diffusion coefficient condition while the event-to-event variations in a are probably driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but still weaker compared to that inferred for the extreme events. The weaker turbulence allows SEPs to escape more easily, resulting in weaker Q/M-dependence of E_B , (lower a values) and spectral steepening at higher energies. In extreme events, the flatter spectra at high- and low-energy and stronger Q/M-dependence of E_B (larger α values) occur due to enhanced wave power, which also enables the faster CME shocks to accelerate flare suprathermals more efficiently than ambient coronal ions

    Correlating the nanostructure and electronic properties of InAs nanowires

    Full text link
    The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominally defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed
    corecore