76,923 research outputs found

    Universal attraction force-inspired freeform surface modeling for 3D sketching

    Get PDF
    This paper presents a novel freeform surface modeling method to construct a freeform surface from 3D sketch. The approach is inspired by Newton’s universal attraction force law to construct a surface model from rough boundary curves and unorganized interior characteristic curves which may cross the boundary curves or not. Based on these unorganized curves, an initial surface can be obtained for conceptual design and it can be improved later in a commercial package. The approach has been tested with examples and it is capable of dealing with unorganized design curves for surface modeling

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Sketch-based virtual human modelling and animation

    Get PDF
    Animated virtual humans created by skilled artists play a remarkable role in today’s public entertainment. However, ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. We developed a new method and a novel sketching interface, which enable anyone who can draw to “sketch-out” 3D virtual humans and animation. We devised a “Stick FigureFleshing-outSkin Mapping” graphical pipeline, which decomposes the complexity of figure drawing and considerably boosts the modelling and animation efficiency. We developed a gesture-based method for 3D pose reconstruction from 2D stick figure drawings. We investigated a “Creative Model-based Method”, which performs a human perception process to transfer users’ 2D freehand sketches into 3D human bodies of various body sizes, shapes and fat distributions. Our current system supports character animation in various forms including articulated figure animation, 3D mesh model animation, and 2D contour/NPR animation with personalised drawing styles. Moreover, this interface also supports sketch-based crowd animation and 2D storyboarding of 3D multiple character interactions. A preliminary user study was conducted to support the overall system design. Our system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Coulomb Distortion Effects for Electron or Positron Induced (e,e)(e,e') Reactions in the Quasielastic Region

    Get PDF
    In response to recent experimental studies we investigate Coulomb distortion effects on (e,e)(e,e') reactions from medium and heavy nuclei for the case of electrons and positrons. We extend our previously reported full DWBA treatment of Coulomb distortions to the case of positrons for the 208Pb(e,e)^{208}Pb(e,e') reaction in the quasielastic region for a particular nuclear model. In addition, we use previously reported successful approaches to treating Coulomb corrections in an approximate way to calculate the Coulomb distortion effects for (e,e)(e,e') reactions for both electrons and positrons for the case of a simple nuclear model for quasielastic knock-out of nucleons. With these results in hand we develop a simple {\em ad-hoc} approximation for use in analyzing experiments, and discuss methods of extracting the ``longitudinal structure function" which enters into evaluation of the Coulomb sum rule. These techniques are generally valid for lepton induced reactions on nuclei with momentum transfers greater than approximately 300 MeV/cMeV/c.Comment: 18 pages, 6 figure

    On the complexion of pseudoscalar mesons

    Full text link
    A strongly momentum-dependent dressed-quark mass function is basic to QCD. It is central to the appearance of a constituent-quark mass-scale and an existential prerequisite for Goldstone modes. Dyson-Schwinger equation (DSEs) studies have long emphasised this importance, and have proved that QCD's Goldstone modes are the only pseudoscalar mesons to possess a nonzero leptonic decay constant in the chiral limit when chiral symmetry is dynamically broken, while the decay constants of their radial excitations vanish. Such features are readily illustrated using a rainbow-ladder truncation of the DSEs. In this connection we find (in GeV): f_{eta_c(1S)}= 0.233, m_{eta_c(2S)}=3.42; and support for interpreting eta(1295), eta(1470) as the first radial excitations of eta(548), eta'(958), respectively, and K(1460) as the first radial excitation of the kaon. Moreover, such radial excitations have electromagnetic diameters greater than 2fm. This exceeds the spatial length of lattices used typically in contemporary lattice-QCD.Comment: 7 pages, 2 figures. Contribution to the proceedings of the "10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU04)," IHEP, Beijing, China, 30/Aug.-4/Sept./0

    Towards operational measures of computer security

    Get PDF
    Ideally, a measure of the security of a system should capture quantitatively the intuitive notion of ‘the ability of the system to resist attack’. That is, it should be operational, reflecting the degree to which the system can be expected to remain free of security breaches under particular conditions of operation (including attack). Instead, current security levels at best merely reflect the extensiveness of safeguards introduced during the design and development of a system. Whilst we might expect a system developed to a higher level than another to exhibit ‘more secure behaviour’ in operation, this cannot be guaranteed; more particularly, we cannot infer what the actual security behaviour will be from knowledge of such a level. In the paper we discuss similarities between reliability and security with the intention of working towards measures of ‘operational security’ similar to those that we have for reliability of systems. Very informally, these measures could involve expressions such as the rate of occurrence of security breaches (cf rate of occurrence of failures in reliability), or the probability that a specified ‘mission’ can be accomplished without a security breach (cf reliability function). This new approach is based on the analogy between system failure and security breach. A number of other analogies to support this view are introduced. We examine this duality critically, and have identified a number of important open questions that need to be answered before this quantitative approach can be taken further. The work described here is therefore somewhat tentative, and one of our major intentions is to invite discussion about the plausibility and feasibility of this new approach
    corecore