796 research outputs found
A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608−52
It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below ∼10⁻² of the Eddington limit (L_(Edd)). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum. We find that the broad Fe–Kα line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is ∼10³⁷ erg s⁻¹ (∼0.05 L_(Edd)), disappear during the decay of the outburst when the source luminosity drops to ∼4.5 × 10³⁵ erg s⁻¹ (∼0.002 L_(Edd)). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise ratio at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disc radius, disc ionization, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disc ionization (log ξ ≳ 4.1) or a much decreased reflection fraction. A changing disc truncation alone, however, cannot account for the lack of reprocessed Fe–Kα emission. The required increase in ionization parameter could occur if the inner accretion flow evaporates from a thin disc into a geometrically thicker flow, such as the commonly assumed formation of a radiatively inefficient accretion flow at lower mass accretion rates
Revealing the spectral state transition of the Clocked Burster, GS 1826-238 with NuSTAR StrayCats
We present the long term analysis of GS 1826-238, a neutron star X-ray binary
known as the "Clocked Burster", using data from NuSTAR StrayCats. StrayCats, a
catalogue of NuSTAR stray light data, contains data from bright, off-axis X-ray
sources that have not been focused by the NuSTAR optics. We obtained stray
light observations of the source from 2014-2021, reduced and analyzed the data
using nustar-gen-utils Python tools, demonstrating the transition of source
from the "island" atoll state to a "banana" branch. We also present the
lightcurve analysis of Type I X-Ray bursts from the Clocked Burster and show
that the bursts from the banana/soft state are systematically shorter in
durations than those from the island/hard state and have a higher burst
fluence. From our analysis, we note an increase in mass accretion rate of the
source, and a decrease in burst frequency with the transition
Radiation Pressure Dominate Regime of Relativistic Ion Acceleration
The electromagnetic radiation pressure becomes dominant in the interaction of
the ultra-intense electromagnetic wave with a solid material, thus the wave
energy can be transformed efficiently into the energy of ions representing the
material and the high density ultra-short relativistic ion beam is generated.
This regime can be seen even with present-day technology, when an exawatt laser
will be built. As an application, we suggest the laser-driven heavy ion
collider.Comment: 10 pages, 4 figure
A Persistent Disk Wind in GRS 1915+105 with NICER
The bright, erratic black hole X-ray binary GRS 1915+105 has long been a
target for studies of disk instabilities, radio/infrared jets, and accretion
disk winds, with implications that often apply to sources that do not exhibit
its exotic X-ray variability. With the launch of NICER, we have a new
opportunity to study the disk wind in GRS 1915+105 and its variability on short
and long timescales. Here we present our analysis of 39 NICER observations of
GRS 1915+105 collected during five months of the mission data validation and
verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the
detection of strong Fe XXVI in 32 (>80%) of these observations, with another
four marginal detections; Fe XXV is less common, but both likely arise in the
well-known disk wind. We explore how the properties of this wind depends on
broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio,
and fractional RMS variability. The trends with count rate and RMS are
consistent with an average wind column density that is fairly steady between
observations but varies rapidly with the source on timescales of seconds. The
line dependence on spectral hardness echoes known behavior of disk winds in
outbursts of Galactic black holes; these results clearly indicate that NICER is
a powerful tool for studying black hole winds.Comment: Accepted for publication in ApJL. Comments welcom
Representation in Westminster in the 1990s : The ghost of Edmund Burke
Why are 'trustee' notions of representation still invoked in the UK House of Commons in the 1990s? In answering this question this article analyses the premises of Burkean theory and the arguments that these premises are of little relevance in the late twentieth century. Despite these dismissals of trusteeship, Burkean ideas are still articulated in the Commons some 200 years after they were first voiced. The idea of trusteeship can prove extremely useful to justify the actions of representatives when those actions conflict with constituency 'opinion', party policy or the wishes of interest groups. Examples of the occasions when Burkean notions have been invoked in the 1990s are provided
Recommended from our members
The effect of videokeratoscope faceplate design on radius of curvature maps
A computer model using finite ray tracing methods was developed to simulate a videokeratoscope analysing an average cornea. Different faceplate designs were tested using five points in the faceplate subtending angles between 15 and 75 in 15 intervals at the corneal vertex. Image quality was assessed by adding the geometrical blurs of the 5 image points. Differences (error) between accurate sagittal radius of curvature and sagittal radius of curvature calculated by the van Saarloos algorithm were calculated for selected surfaces at the same corneal points. The calculations were repeated for the tangential radius of curvature. Differences equal or bigger than 0.02 mm were regarded as clinically significant. The surface that provided the sharpest image for an average cornea was a cylinder with the base 120 mm away from the corneal vertex and a diameter of 26 mm. Changing the faceplate design results in clinically significant differences for an average cornea
A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608−52
It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below ∼10⁻² of the Eddington limit (L_(Edd)). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum. We find that the broad Fe–Kα line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is ∼10³⁷ erg s⁻¹ (∼0.05 L_(Edd)), disappear during the decay of the outburst when the source luminosity drops to ∼4.5 × 10³⁵ erg s⁻¹ (∼0.002 L_(Edd)). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise ratio at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disc radius, disc ionization, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disc ionization (log ξ ≳ 4.1) or a much decreased reflection fraction. A changing disc truncation alone, however, cannot account for the lack of reprocessed Fe–Kα emission. The required increase in ionization parameter could occur if the inner accretion flow evaporates from a thin disc into a geometrically thicker flow, such as the commonly assumed formation of a radiatively inefficient accretion flow at lower mass accretion rates
A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608-52
It is commonly assumed that the properties and geometry of the accretion flow
in transient low-mass X-ray binaries (LMXBs) significantly change when the
X-ray luminosity decays below of the Eddington limit (). However, there are few observational cases where the evolution of the
accretion flow is tracked in a single X-ray binary over a wide dynamic range.
In this work, we use NuSTAR and NICER observations obtained during the 2018
accretion outburst of the neutron star LMXB 4U 1608-52, to study changes in the
reflection spectrum. We find that the broad Fe-K line and Compton hump,
clearly seen during the peak of the outburst when the X-ray luminosity is erg/s ( ), disappear during the decay of the
outburst when the source luminosity drops to erg/s
( ). We show that this non-detection of the reflection
features cannot be explained by the lower signal-to-noise at lower flux, but is
instead caused by physical changes in the accretion flow. Simulating synthetic
NuSTAR observations on a grid of inner disk radius, disk ionisation, and
reflection fraction, we find that the disappearance of the reflection features
can be explained by either increased disk ionisation () or a
much decreased reflection fraction. A changing disk truncation alone, however,
cannot account for the lack of reprocessed Fe-K emission. The required
increase in ionisation parameter could occur if the inner accretion flow
evaporates from a thin disk into a geometrically thicker flow, such as the
commonly assumed formation of an radiatively inefficient accretion flow at
lower mass accretion rates.Comment: Accepted for publication in MNRA
- …