39,312 research outputs found
A Trackable Model of Reciprocity and Fairness.
We introduced a parametric model of other-regarding preferences in which my emotional state determines the marginal rate of substitution between my own and other' payoffs, and thus my subsequent choices. In turn, my emotional state responds to relative status and to the kindness or unkindness of others' choices. Structural estimations of this model with six existing data sets demonstrate that other-regarding preferences depend on status, reciprocity, and perceived property rights.RECIPROCITY ; MARGINAL RATE OF SUBSTITUTION ; PAYOFFS
Modification of turbulent transport with continuous variation of flow shear in the Large Plasma Device
Continuous control over azimuthal flow and shear in the edge of the Large
Plasma Device (LAPD) has been achieved using a biasable limiter which has
allowed a careful study of the effect of flow shear on pressure-gradient-driven
turbulence and transport in LAPD. LAPD rotates spontaneously in the ion
diamagnetic direction (IDD); positive limiter bias first reduces, then
minimizes (producing a near-zero shear state), and finally reverses the flow
into the electron diamagnetic direction (EDD). Degradation of particle
confinement is observed in the minimum shearing state and reduction in
turbulent particle flux is observed with increasing shearing in both flow
directions. Near-complete suppression of turbulent particle flux is observed
for shearing rates comparable to the turbulent autocorrelation rate measured in
the minimum shear state. Turbulent flux suppression is dominated by amplitude
reduction in low-frequency (kHz) density fluctuations. An increase in
fluctuations for the highest shearing states is observed with the emergence of
a coherent mode which does not lead to net particle transport. The variations
of density fluctuations are fit well with power-laws and compare favorably to
simple models of shear suppression of transport.Comment: 10 pages, 5 figures; Submitted to Phys. Rev. Let
Necrotic tumor growth: an analytic approach
The present paper deals with a free boundary problem modeling the growth
process of necrotic multi-layer tumors. We prove the existence of flat
stationary solutions and determine the linearization of our model at such an
equilibrium. Finally, we compute the solutions of the stationary linearized
problem and comment on bifurcation.Comment: 14 pages, 3 figure
The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine
We study the propagator of a non-relativistic, non-interacting particle in
any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an
external, flat spacetime in which two spatial regions, at time and
at time , are connected by two temporal wormholes, one leading from
the past side of to t the future side of and the other from the
past side of to the future side of . We express the propagator
explicitly in terms of those for ordinary, flat spacetime and for the two
wormholes; and from that expression we show that the propagator satisfies
completeness and unitarity in the initial and final ``chronal regions''
(regions without closed timelike curves) and its propagation from the initial
region to the final region is unitary. However, within the time machine it
satisfies neither completeness nor unitarity. We also give an alternative proof
of initial-region-to-final-region unitarity based on a conserved current and
Gauss's theorem. This proof can be carried over without change to most any
non-relativistic time-machine spacetime; it is the non-relativistic version of
a theorem by Friedman, Papastamatiou and Simon, which says that for a free
scalar field, quantum mechanical unitarity follows from the fact that the
classical evolution preserves the Klein-Gordon inner product
Inferring the neutron star equation of state from binary inspiral waveforms
The properties of neutron star matter above nuclear density are not precisely
known. Gravitational waves emitted from binary neutron stars during their late
stages of inspiral and merger contain imprints of the neutron-star equation of
state. Measuring departures from the point-particle limit of the late inspiral
waveform allows one to measure properties of the equation of state via
gravitational wave observations. This and a companion talk by J. S. Read
reports a comparison of numerical waveforms from simulations of inspiraling
neutron-star binaries, computed for equations of state with varying stiffness.
We calculate the signal strength of the difference between waveforms for
various commissioned and proposed interferometric gravitational wave detectors
and show that observations at frequencies around 1 kHz will be able to measure
a compactness parameter and constrain the possible neutron-star equations of
state.Comment: Talk given at the 12th Marcel Grossman Meeting, Paris, France, 12-18
Jul 200
Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves
Two formulations of quantum mechanics, inequivalent in the presence of closed
timelike curves, are studied in the context of a soluable system. It
illustrates how quantum field nonlinearities lead to a breakdown of unitarity,
causality, and superposition using a path integral. Deutsch's density matrix
approach is causal but typically destroys coherence. For each of these
formulations I demonstrate that there are yet further alternatives in
prescribing the handling of information flow (inequivalent to previous
analyses) that have implications for any system in which unitarity or coherence
are not preserved.Comment: 25 pages, phyzzx, CALT-68-188
- …
