5,238 research outputs found

    Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    Full text link
    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.Comment: Accepted by Commun. Theor. Phy

    Noncommutative Field Theory from twisted Fock space

    Full text link
    We construct a quantum field theory in noncommutative spacetime by twisting the algebra of quantum operators (especially, creation and annihilation operators) of the corresponding quantum field theory in commutative spacetime. The twisted Fock space and S-matrix consistent with this algebra have been constructed. The resultant S-matrix is consistent with that of Filk\cite{Filk}. We find from this formulation that the spin-statistics relation is not violated in the canonical noncommutative field theories.Comment: 13 pages, 1 figure, minor changes, add reference

    Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells In Vivo

    Get PDF
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    Full text link
    Surface sensitive synchrotron-X-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L3L_3 Cs+^+ resonance, we provide, for the first time, spatial counterion distributions (Cs+^+) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H3_3O+^+ at the interface leads to proton-transfer back to the phosphate group by a high contact-potential, whereas high salt concentrations lower the contact-potential resulting in proton-release and increased surface charge-density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions

    Variations in the incidence of common mental disorder symptoms in the general population throughout the COVID-19 pandemic: a longitudinal cohort study

    Get PDF

    Generalized Poincare algebras, Hopf algebras and kappa-Minkowski spacetime

    Full text link
    We propose a generalized description for the kappa-Poincare-Hopf algebra as a symmetry quantum group of underlying kappa-Minkowski spacetime. We investigate all the possible implementations of (deformed) Lorentz algebras which are compatible with the given choice of kappa-Minkowski algebra realization. For the given realization of kappa-Minkowski spacetime there is a unique kappa-Poincare-Hopf algebra with undeformed Lorentz algebra. We have constructed a three-parameter family of deformed Lorentz generators with kappa-Poincare algebras which are related to kappa-Poincare-Hopf algebra with undeformed Lorentz algebra. Known bases of kappa-Poincare-Hopf algebra are obtained as special cases. Also deformation of igl(4) Hopf algebra compatible with the kappa-Minkowski spacetime is presented. Some physical applications are briefly discussed.Comment: 15 pages; journal version; Physics Letters B (2012

    Distributed fault estimation with randomly occurring uncertainties over sensor networks

    Get PDF
    This paper is concerned with the distributed fault estimation problem for a class of uncertain stochastic systems over sensor networks. The norm-bounded uncertainty enters into the system in a random way governed by a set of Bernoulli distributed white sequence. The purpose of the addressed problem is to design distributed fault estimators, via available output measurements from not only the individual sensor, but also its neighbouring sensors, such that the fault estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall estimation error dynamics. Simulation results are provided to demonstrate the effectiveness of the proposed fault estimation technique in this paper.This work was supported in part by the National Natural Science Foundation of China [ grant number 61329301], [grant number 61422301], [grant number 61374127]; the Outstanding Youth Science Foundation of Heilongjiang Province [grant number JC2015016]; the Alexander von Humboldt Foundation of Germany

    Vertically Self-Gravitating ADAFs in the Presence of Toroidal Magnetic Field

    Full text link
    Force due to the self-gravity of the disc in the vertical direction is considered to study its possible effects on the structure of a magnetized advection-dominated accretion disc. We present steady-sate self similar solutions for the dynamical structure of such a type of the accretion flows. Our solutions imply reduced thickness of the disc because of the self-gravity. It also imply that the thickness of the disc will increase by adding the magnetic field strength.Comment: Accepted for publication in Astrophysics and Space Science

    Spin measurement of 4U 1543-47 with Insight-HXMT and NICER from its 2021 outburst: A test of accretion disk models at high luminosities

    Full text link
    4U 1543--47 is one of a handful of known black hole candidates located in the Milky Way Galaxy, and has undergone a very bright outburst in 2021, reaching a total of \sim9 Crab, as observed by the Monitor of All-sky Image (MAXI), and exceeding twice its Eddington luminosity. The unprecedented bright outburst of 4U 1543--47 provides a unique opportunity to test the behavior of accretion disk models at high luminosities and accretion rates. In addition, we explore the possibility of constraining the spin of the source at high accretion rates, given that previous spin measurements of 4U 1543--47 have been largely inconsistent with each other. We measure the spectral evolution of the source throughout its outburst as observed by Insight-HXMT, and compare the behavior of both the thin disk model kerrbb2, as well as the slim disk model slimbh up to the Eddington limit for two different values of disk α\alpha-viscosity. In addition, given the behavior of these two models, we identify two `golden' epochs for which it is most suitable to measure the spin with continuum fitting.Comment: 10 pages, 6 figure

    Seminar Users in the Arabic Twitter Sphere

    Full text link
    We introduce the notion of "seminar users", who are social media users engaged in propaganda in support of a political entity. We develop a framework that can identify such users with 84.4% precision and 76.1% recall. While our dataset is from the Arab region, omitting language-specific features has only a minor impact on classification performance, and thus, our approach could work for detecting seminar users in other parts of the world and in other languages. We further explored a controversial political topic to observe the prevalence and potential potency of such users. In our case study, we found that 25% of the users engaged in the topic are in fact seminar users and their tweets make nearly a third of the on-topic tweets. Moreover, they are often successful in affecting mainstream discourse with coordinated hashtag campaigns.Comment: to appear in SocInfo 201
    corecore