1,232 research outputs found

    Photon Momentum Transfer in Single-Photon Double Ionization of Helium

    No full text
    We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization

    ¿Qué son los flavonoides y a qué se debe su efecto protector?

    Get PDF

    Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content

    Full text link
    The spectral detection efficiency and the dark count rate of superconducting nanowire single-photon detectors (SNSPD) has been studied systematically on detectors made from thin NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm thick NbN films results in a more than two orders of magnitude decrease of the dark count rates and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed phenomena are explained by an improvement of uniformity of NbN films that has been confirmed by a decrease of resistivity and an increase of the ratio of the measured critical current to the depairing current. The latter factor is considered as the most crucial for both the cut-off wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria for material properties to optimize SNSPD in the infrared spectral region.Comment: 15 pages, 6 figure

    Multiorbital tunneling ionization of the CO molecule

    Full text link
    We coincidently measure the molecular frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review Letter

    Transfer ionization and its sensitivity to the ground-state wave function

    Full text link
    We present kinematically complete theoretical calculations and experiments for transfer ionization in H++^++He collisions at 630 keV/u. Experiment and theory are compared on the most detailed level of fully differential cross sections in the momentum space. This allows us to unambiguously identify contributions from the shake-off and two-step-2 mechanisms of the reaction. It is shown that the simultaneous electron transfer and ionization is highly sensitive to the quality of a trial initial-state wave function
    corecore