878 research outputs found

    First year engineering mathematics: the London South Bank University experience

    Get PDF
    This short article describes an innovative approach to teaching mathematics to first year undergraduates on a variety of B. Eng. courses offered in the Faculty of Engineering, Science and Built Environment (FESBE) of London South Bank University (LSBU)

    Pinning potential in highly performant CaKFe4As4 superconductor from DC magnetic relaxation and AC multi-frequency susceptibility studies

    Get PDF
    We have investigated the pinning potential of high-quality single crystals of superconducting material CaKFe4As4 having high critical current density and very high upper critical field using both magnetization relaxation measurements and frequency-dependent AC susceptibility. Preliminary studies of the superconducting transition and of the isothermal magnetization loops confirmed the high quality of the samples, while temperature dependence of the AC susceptibility in high magnetic fields show absolutely no dependence on the cooling conditions, hence, no magnetic history. From magnetization relaxation measurements were extracted the values of the normalized pinning potential U*, which reveals a clear crossover between elastic creep and plastic creep. The extremely high values of U*, up to 1200 K around the temperature of 20 K lead to a nearly zero value of the probability of thermally-activated flux jumps at temperatures of interest for high-field applications. The values of the creep exponents in the two creep regimes resulted from the analysis of the magnetization relaxation data are in complete agreement with theoretical models. Pinning potentials were also estimated, near the critical temperature, from AC susceptibility measurements, their values being close to those resulted (at the same temperature and DC field) from the magnetization relaxation data

    Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime

    Full text link
    We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The system's electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient (SS) and the thermal conductivity (κ\kappa), along with the system's thermoelectric figure of merit (ZT) are numerically estimated based on a Green's function formalism that includes contributions up to the Hartree-Fock level. Our results account for finite onsite Coulomb interaction terms in both component quantum dots and discuss various ways leading to an enhanced thermoelectric figure of merit for the system. We demonstrate that the presence of Fano resonances in the Coulomb blockade regime is responsible for a strong violation of the Wiedemann-Franz law and a considerable enhancement of the system's figure of merit (ZTZT).Comment: 7 pages, 10 figure

    Harnessing spin precession with dissipation

    Get PDF
    International audienceNon-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors

    Forest resampling for distributed sequential Monte Carlo

    Get PDF
    This paper brings explicit considerations of distributed computing architectures and data structures into the rigorous design of Sequential Monte Carlo (SMC) methods. A theoretical result established recently by the authors shows that adapting interaction between particles to suitably control the Effective Sample Size (ESS) is sufficient to guarantee stability of SMC algorithms. Our objective is to leverage this result and devise algorithms which are thus guaranteed to work well in a distributed setting. We make three main contributions to achieve this. Firstly, we study mathematical properties of the ESS as a function of matrices and graphs that parameterize the interaction amongst particles. Secondly, we show how these graphs can be induced by tree data structures which model the logical network topology of an abstract distributed computing environment. Thirdly, we present efficient distributed algorithms that achieve the desired ESS control, perform resampling and operate on forests associated with these trees

    Thermodynamics of a trapped interacting Bose gas and the renormalization group

    Full text link
    We apply perturbative renormalization group theory to the symmetric phase of a dilute interacting Bose gas which is trapped in a three-dimensional harmonic potential. Using Wilsonian energy-shell renormalization and the epsilon-expansion, we derive the flow equations for the system. We relate these equations to the flow for the homogeneous Bose gas. In the thermodynamic limit, we apply our results to study the transition temperature as a function of the scattering length. Our results compare well to previous studies of the problem.Comment: 14 pages, 5 figure

    Electron-fluctuation interaction in a non-Fermi superconductor

    Full text link
    We studied the influence of the amplitude fluctuations of a non-Fermi superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The classical fluctuations give a temperature dependence in the pseudogap induced in the fermionic excitations.Comment: revtex fil

    Visualizing a dilute vortex liquid to solid phase transition in a Bi2Sr2CaCu2O8 single crystal

    Full text link
    Using high sensitivity magneto-optical imaging we find evidence for a jump in local vortex density associated with a vortex liquid to solid phase transition just above the lower critical field in a single crystal of Bi2Sr2CaCu2O8. We find the regions of the sample where the jump in vortex density occurs are associated with low screening currents. In the field - temperature vortex phase diagram we identify phase boundaries demarcating a dilute vortex liquid phase and the vortex solid phase. The phase diagram also identifies a coexistence regime of the dilute vortex liquid and solid phases and shows the effect of pinning on the vortex liquid to solid phase transition line. We find the phase boundary lines can be fitted to the theoretically predicted expression for the low-field portion of the phase boundary delineating a dilute vortex solid from a vortex liquid phase. We show that the same theoretical fit can be used to describe the pinning dependence of the low-field phase boundary lines provided a dependence of the Lindemann number on pinning strength is considered.Comment: 16 pages and 6 figures (Published
    corecore