235 research outputs found

    Controlling the Frequency-Temperature Sensitivity of a Cryogenic Sapphire Maser Frequency Standard by Manipulating Fe3+ Spins in the Sapphire Lattice

    Full text link
    To create a stable signal from a cryogenic sapphire maser frequency standard, the frequency-temperature dependence of the supporting Whispering Gallery mode must be annulled. We report the ability to control this dependence by manipulating the paramagnetic susceptibility of Fe3+ ions in the sapphire lattice. We show that the maser signal depends on other Whispering Gallery modes tuned to the pump signal near 31 GHz, and the annulment point can be controlled to exist between 5 to 10 K depending on the Fe3+ ion concentration and the frequency of the pump. This level of control has not been achieved previously, and will allow improvements in the stability of such devices.Comment: 17 pages, 10 figure

    The center of the partition algebra

    Get PDF
    In this paper we show that the center of the partition algebra , in the semisimple case, is given by the subalgebra of supersymmetric polynomials in the normalised Jucys-Murphy elements. For the non-semisimple case, such a subalgebra is shown to be central, and in particular it is large enough to recognise the block structure of . This allows one to give an alternative description for when two simple -modules belong to the same block

    Hybrid electron spin resonance and whispering gallery mode resonance spectroscopy of Fe3+ in sapphire

    Get PDF
    The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a spectroscopic technique which uses traditional electron spin resonance (ESR) combined with the measurement of a large population of electromagnetic whispering gallery modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements of two ultrahigh-purity sapphires cooled to 20 mK in temperature, and determine the concentration of Fe3 ions and their frequency sensitivity to a dc magnetic field. Our method is different from ESR in that it is possible to track the resonant frequency of the ion from zero applied magnetic field to any arbitrary value, allowing excellent measurement precision. This high precision reveals anisotropic behavior of the Zeeman splitting. In both crystals, each Zeeman component demonstrates a different g factor

    Measurement of fundamental thermal noise limit in a cryogenic sapphire frequency standard using bimodal maser oscillations

    Full text link
    We report observations of the Schawlow-Townes noise limit in a cryogenic sapphire secondary frequency standard. The effect causes a fundamental limit to the frequency stability, and was measured through the novel excitation of a bimodal maser oscillation of a Whispering Gallery doublet at 12.04GHz12.04 GHz. The beat frequency of 10kHz10 kHz between the oscillations enabled a sensitive probe for this measurement of fractional frequency instability of 10−14τ−1/210^{-14}\tau^{-1/2} with only 0.5 pWpW of output power.Comment: Published in PRL 100, 233901 (2008

    Phase transformation-induced superconducting aluminium-silicon alloy rings

    Full text link
    The development of a materials platform that exhibits both superconducting and semiconducting properties is an important endeavour for a range of emerging quantum technologies. We investigate the formation of superconductivity in nanowires fabricated with silicon-on-insulator (SOI). Aluminium from deposited contact electrodes is found to interdiffuses with the Si nanowire structures to form an Al-Si alloy along the entire length of the predefined nanowire device over micron length scales at temperatures well below that of the Al-Si eutectic. The resultant transformed nanowire structures are layered in geometry with a continuous Al-Si alloy wire sitting on the buried oxide of the SOI and a residual Si cap sitting on top of the wire. The phase transformed material is conformal with any predefined device patterns and the resultant structures are exceptionally smooth-walled compared to similar nanowire devices formed by silicidation processes. The superconducting properties of a mesoscopic AlSi ring formed on a SOI platform are investigated. Low temperature magnetoresistance oscillations, quantized in units of the fluxoid, h/2e, are observed.Comment: 11 pages, 9 figure

    Age-related changes in muscle architecture and metabolism in humans: The likely contribution of physical inactivity to age-related functional decline

    Get PDF
    In the United Kingdom (UK), it is projected that by 2035 people aged >65 years will make up 23 % of the population, with those aged >85 years accounting for 5% of the total population. Ageing is associated with progressive changes in muscle metabolism and a decline in functional capacity, leading to a loss of independence. Muscle metabolic changes associated with ageing have been linked to alterations in muscle architecture and declines in muscle mass and insulin sensitivity. However, the biological features often attributed to muscle ageing are also seen in controlled studies of physical inactivity (e.g. reduced step-count and bed-rest), and it is currently unclear how many of these ageing features are due to ageing per se or sedentarism. This is particularly relevant at a time of home confinements reducing physical activity levels during the Covid-19 pandemic. Current knowledge gaps include the relative contribution that physical inactivity plays in the development of many of the negative features associated with muscle decline in older age. Similarly, data demonstrating positive effects of government recommended physical activity guidelines on muscle health are largely non-existent. It is imperative therefore that research examining interactions between ageing, physical activity and muscle mass and metabolic health is prioritised so that it can inform on the “normal” muscle ageing process and on strategies for improving health span and well-being. This review will focus on important changes in muscle architecture and metabolism that accompany ageing and highlight the likely contribution of physical inactivity to these changes

    Paediatric phantom dose study using digital radiography with variation of exposure parameters and filtration

    Get PDF
    Paediatric digital radiography remains a challenge for many radiographers. The subsequent need for focused paediatric care is outlined by ‘The Image Gently Campaign’, which reports a lack of both expertise and educational resources surrounding this area. This requirement is reinforced by The International Commission on Radiological Protection (ICRP), which identifies a need for both optimisation and consistency in digital paediatric imaging. Although a considerable proportion of recent research surrounds paediatric diagnostic imaging, Jones et. al highlights an absence of literature regarding optimisation in paediatric extremity imaging.This is of particular importance when considering paediatric patients who, due to their additional life expectancy and increased tissue radio-sensitivity, are considerably more sensitive to the detrimental effects of ionising radiation. Although the radiation dose received for diagnostic purposes is low, it is pertinent that each exposure be minimised due to the cumulative nature of radiation. The question to be addressed through our study is as follows; using a paediatric phantom with multiple bone fractures, could the variation of exposure parameters and filtration in digital radiography achieve a reduction in dose without substantially affecting image quality? This study aims to evaluate the variation of exposure parameters and filtration in image quality and dose in a paediatric phantom study using a digital radiography (DR) wireless detector.info:eu-repo/semantics/publishedVersio
    • 

    corecore