619 research outputs found

    Adhesion to zirconia: A systematic review of current conditioning methods and bonding materials

    Get PDF
    Background. Reliable bonding between resin composite cements and high strength ceramics is difficult to achieve because of their chemical inertness and lack of silica content that makes etching impossible. The purpose of this review is to classify and analyze the existing methods and materials suggested to improve the adhesion of zirconia to dental substrate by using composite resins, in order to explore current trends in surface conditioning methods with predictable results. Methods. The current literature, examining the bond strength of zirconia ceramics, and including in vitro studies, clinical studies, and a systematic review, was analyzed. The research in the literature was carried out using PubMed and Cochrane Library databases, only papers in English, published online from 2013 to 2018. The following keywords and their combinations were used: Zirconia, 3Y-TZP, Adhesion, Adhesive cementation, Bonding, Resin, Composite resin, Composite material, Dentin, Enamel. Results. Research, in PubMed and Cochrane Library databases, provided 390 titles with abstracts. From these, a total of 93 publications were chosen for analysis. After a full text evaluation, seven articles were discarded. Therefore, the final sample was 86, including in vitro, clinical studies, and one systematic review. Various adhesive techniques with different testing methods were examined. Conclusions. Airborne-particle abrasion and tribo-chemical silica coating are the pre-treatment methods with more evidence in the literature. Increased adhesion could be expected after physico-chemical conditioning of zirconia. Surface contamination has a negative effect on adhesion. There is no evidence to support a universal adhesion protocol

    "All-versus-nothing" nonlocality test of quantum mechanics by two-photon hyperentanglement

    Full text link
    We report the experimental realization and the characterization of polarization and momentum hyperentangled two photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all versus nothing" test of quantum mechanics was performed. The two photon hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information. PACS: 03.65.Ud, 03.67.Mn, 42.65. LmComment: Replaced with published versio

    Relationship between systolic time intervals and arterial blood pressure.

    Get PDF
    It has been suggested that systolic time intervals (STI) can be used to monitor the cardiac effects of antihypertensive treatments and also to evaluate hypertensive patients. STI changes observed in hypertensives have been ascribed to myocardial disease, although they could be due to the existence of a relationship between STI and blood pressure. A group of 37 subjects (18 normotensives and 19 hypertensives) with no signs of heart failure and left ventricular dysfunction were studied to examine the relationship of STI to blood pressure. Pacing with an external battery pulse generator was performed at the rate of 95 beats/min in order to eliminate differences in heart rate. STI were measured from good quality high speed (100 mm/s) recordings and the average value of 10 consecutive cardiac cycles was used for statistical analysis. Normal subjects showed significantly lower values of pre-ejection period (PEP), electromechanical systole (QS2), and pre-ejection period/left ventricular ejection time ratio (PEP/LVET). Moreover, a significant inverse relationship between diastolic pressure and LVET and significant direct relationships between diastolic pressure and PEP, systolic pressure and PEP, diastolic pressure and PEP/LVET, and between systolic pressure and PEP/LVET were demonstrated. We suggest to consider the relation of STI to blood pressure to provide regression equations to best appreciate and use STI

    The limited reach of fake news on Twitter during 2019 European elections

    Get PDF
    The advent of social media changed the way we consume content, favoring a disintermediated access to, and production of information. This scenario has been matter of critical discussion about its impact on society, magnified in the case of the Arab Springs or heavily criticized during Brexit and the 2016 U.S. elections. In this work we explore information consumption on Twitter during the 2019 European Parliament electoral campaign by analyzing the interaction patterns of official news outlets, disinformation outlets, politicians, people from the showbiz and many others. We extensively explore interactions among different classes of accounts in the months preceding the elections, held between 23rd and 26th of May, 2019. We collected almost 400,000 tweets posted by 863 accounts having different roles in the public society. Through a thorough quantitative analysis we investigate the information flow among them, also exploiting geolocalized information. Accounts show the tendency to confine their interaction within the same class and the debate rarely crosses national borders. Moreover, we do not find evidence of an organized network of accounts aimed at spreading disinformation. Instead, disinformation outlets are largely ignored by the other actors and hence play a peripheral role in online political discussions

    Picosecond Internal Dynamics of Lysozyme as Affected by Thermal Unfolding in Nonaqueous Environment

    Get PDF
    AbstractA neutron-scattering investigation of the internal picosecond dynamics of lysozyme solvated in glycerol as a function of temperature in the range 200–410K has been undertaken. The inelastic contribution to the measured intensity is characterized by the presence of a bump generally known as “boson peak”, clearly distinguishable at low temperature. When the temperature is increased the quasielastic component of the spectrum becomes more and more intrusive and progressively overwhelms the vibrational bump. This happens especially for T>345K when the protein goes through an unfolding process, which leads to the complete denaturation. The quasielastic term is the superposition of two components whose intensities and linewidths have been studied as a function of temperature. The slower component describes motions with characteristic times of ∼4ps corresponding to reorientations of polypeptide side chains. Both the intensity and linewidth of this kind of relaxations show two distinct regimes with a crossover in the temperature range where the melting process occurs, thus suggesting the presence of a dynamical transition correlated to the protein unfolding. Conversely the faster component might be ascribed to the local dynamics of hydrogen atoms caged by the nearest neighbors with characteristic time of ∼0.3ps

    PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms

    Get PDF
    Polyhydroxyalkanoates (PHAs) are a family of biopolyesters produced by many bacteria as intracellular storage carbon and energy source. Poly-β-hydroxybutyrate (PHB) is probably the most common type of PHA. It is biodegradable and renewable, with relevant thermoplastic properties along with adjustable thermal and mechanical properties. The thermoplastic properties of PHB and its biodegradability make it a potential alternative to petroleum-based plastics. Several microorganisms growing in the dark and/or in the light produce PHB. The polymer is mainly accumulated in the cytoplasm of cells when microorganisms are growing under conditions of stress. If purple non-sulfur photosynthetic bacteria (PNSB) are grown under nitrogen starvation conditions, a photoevolution of molecular hydrogen occurs as well. The PHB amount increases when carbon and energy sources are in excess, but the growth is limited, for example, by the lack of a nitrogen, phosphorous or sulfur source. This work deals the possibility of producing PHAs by photosynthetic microorganisms belonging to cyanobacteria and PNSB. Different culture broths, with and without organic carbon sources, were investigated to maximize PHA production by photosynthetic microorganisms. An unbalanced agro-industrial wastewater has been also investigated in the present study. It concerns the olive mill wastewater (OMW) containing significant reusable carbon fractions suitable for an eco-efficient valorization by feeding photosynthetic processes. The maximum PHA concentration in a cyanobacterium drybiomass was 317 mg/L, when growing cells in a medium with a low content of acetic acid (LAC). In PNSB drybiomass the maximum PHB content was 215 mg/L, when growing PNSB in a synthetic medium. A simultaneous H2 co-production (1,295 mL/L of culture) was cumulated as well, at the end of the process

    Binary green blends of poly(Lactic acid) with poly(butylene adipate-co-butylene terephthalate) and poly(butylene succinate-co-butylene adipate) and their nanocomposites

    Get PDF
    Poly(lactic acid) (PLA) is the most widely produced biobased, biodegradable and biocompatible polyester. Despite many of its properties are similar to those of common petroleum-based polymers, some drawbacks limit its utilization, especially high brittleness and low toughness. To overcome these problems and improve the ductility and the impact resistance, PLA is often blended with other biobased and biodegradable polymers. For this purpose, poly(butylene adipate-co-butylene terephthalate) (PBAT) and poly(butylene succinate-co-butylene adipate) (PBSA) are very advantageous copolymers, because their toughness and elongation at break are complementary to those of PLA. Similar to PLA, both these copolymers are biodegradable and can be produced from annual renewable resources. This literature review aims to collect results on the mechanical, thermal and morphological properties of PLA/PBAT and PLA/PBSA blends, as binary blends with and without addition of coupling agents. The effect of different compatibilizers on the PLA/PBAT and PLA/PBSA blends properties is here elucidated, to highlight how the PLA toughness and ductility can be improved and tuned by using appropriate additives. In addition, the incorporation of solid nanoparticles to the PLA/PBAT and PLA/PBSA blends is discussed in detail, to demonstrate how the nanofillers can act as morphology stabilizers, and so improve the properties of these PLA-based formulations, especially mechanical performance, thermal stability and gas/vapor barrier properties. Key points about the biodegradation of the blends and the nanocomposites are presented, together with current applications of these novel green materials

    GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network

    Get PDF
    We have previously shown that GABA and glycine modulate respiratory activity in the in vitro brainstem preparations of the lamprey and that blockade of GABA(A) and glycine receptors restores the respiratory rhythm during apnoea caused by blockade of ionotropic glutamate receptors. However, the neural substrates involved in these effects are unknown. To address this issue, the role of GABA(A), GABA(B) and glycine receptors within the paratrigeminal respiratory group (pTRG), the proposed respiratory central pattern generator, and the vagal motoneuron region was investigated both during apnoea induced by blockade of glutamatergic transmission and under basal conditions through microinjections of specific antagonists. The removal of GABAergic, but not glycinergic transmission within the pTRG, causes the resumption of rhythmic respiratory activity during apnoea, and reveals the presence of a modulatory control of the pTRG under basal conditions. A blockade of GABA(A) and glycine receptors within the vagal region strongly increases the respiratory frequency through disinhibition of neurons projecting to the pTRG from the vagal region. These neurons were retrogradely labelled (neurobiotin) from the pTRG. Intense GABA immunoreactivity is observed both within the pTRG and the vagal area, which corroborates present findings. The results confirm the pTRG as a primary site of respiratory rhythm generation, and suggest that inhibition modulates the activity of rhythm-generating neurons, without any direct role in burst formation and termination mechanisms
    corecore