142 research outputs found

    Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    Get PDF
    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics and blade geometry only are of importance at very low inflow turbulence. At realistic turbulence conditions for an atmospheric boundary layer the specific blade characteristics play an minor role on power performance and the resulting wake characteristics. The results therefore give a hint that the choice of airfoil data in ACD simulations is not crucial if the intention of the simulations is to compute mean wake characteristics using a turbulent inflow

    Composition and Function of Haemolymphatic Tissues in the European Common Shrew

    Get PDF
    BACKGROUND: Studies of wild animals responding to their native parasites are essential if we are to understand how the immune system functions in the natural environment. While immune defence may bring increased survival, this may come at a resource cost to other physiological traits, including reproduction. Here, we tested the hypothesis that wild common shrews (Sorex araneus), which produce large numbers of offspring during the one breeding season of their short life span, forgo investment in immunity and immune system maintenance, as increased longevity is unlikely to bring further opportunities for mating. In particular, we predicted that adult shrews, with shorter expected lifespans, would not respond as effectively as young animals to infection. METHODOLOGY/PRINCIPAL FINDINGS: We examined haemolymphatic tissues from wild-caught common shrews using light and transmission electron microscopy, applied in conjunction with immunohistology. We compared composition and function of these tissues in shrews of different ages, and the extent and type of inflammatory reactions observed in response to natural parasitic infections. All ages seemed able to mount systemic, specific immune responses, but adult shrews showed some signs of lymphatic tissue exhaustion: lymphatic follicles in adults (n = 21) were both smaller than those in sub-adults (n = 18; Wald = 11.1, p<0.05) and exhibited greater levels of depletion (Wald = 13.3, p<0.05). CONCLUSIONS/SIGNIFICANCE: Contrary to our expectations, shrews respond effectively to their natural parasites, and show little indication of immunosenescence as adults. The pancreas of Aselli, a unique lymphoid organ, may aid in providing efficient immune responses through the storage of large numbers of plasma cells. This may allow older animals to react effectively to previously encountered parasites, but infection by novel agents, and eventual depletion of plasma cell reserves, could both still be factors in the near-synchronous mortality of adult shrews observed shortly after breeding

    Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest

    Get PDF
    Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew

    Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy

    Get PDF
    The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models for the use case of wind energy development and operation. Several coupling methods and techniques for generating turbulence at the microscale that is subgrid to the mesoscale have been evaluated for a variety of cases. Case studies included flat-terrain, complex-terrain, and offshore environments. Methods were developed to bridge the terra incognita, which scales from about 100 m through the depth of the boundary layer. The team used wind-relevant metrics and archived code, case information, and assessment tools and is making those widely available. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy.</p
    • …
    corecore