116 research outputs found

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices

    Tunable photo-responsive elastic metamaterials

    Get PDF
    The metamaterial paradigm has allowed an unprecedented space-time control of various physical fields, including elastic and acoustic waves. Despite the wide variety of metamaterial configurations proposed so far, most of the existing solutions display a frequency response that cannot be tuned, once the structures are fabricated. Few exceptions include systems controlled by electric or magnetic fields, temperature, radio waves and mechanical stimuli, which may often be unpractical for real-world implementations. To overcome this limitation, we introduce here a polymeric 3D-printed elastic metamaterial whose transmission spectrum can be deterministically tuned by a light field. We demonstrate the reversible doubling of the width of an existing frequency band gap upon selective laser illumination. This feature is exploited to provide an elastic-switch functionality with a one-minute lag time, over one hundred cycles. In perspective, light-responsive components can bring substantial improvements to active devices for elastic wave control, such as beam-splitters, switches and filters

    3D Printing of Cellulose Nanocrystal-Loaded Hydrogels through Rapid Fixation by Photopolymerization

    Get PDF
    New ink compositions for direct ink writing (DIW) printing of hydrogels, combining superior rheological properties of cellulose nanocrystals (CNCs) and a water-compatible photoinitiator, are presented. Rapid fixation was achieved by photopolymerization induced immediately after the printing of each layer by 365 nm light for 5 s, which overcame the common height limitation in DIW printing of hydrogels, and enabled the fabrication of objects with a high aspect ratio. CNCs imparted a unique rheological behavior, which was expressed by orders of magnitude difference in viscosity between low and high shear rates and in rapid high shear recovery, without compromising ink printability. Compared to the literature, the presented printing compositions enable the use of low photoinitiator concentrations at a very short build time, 6.25 s/mm, and are also curable by 405 nm light, which is favorable for maintaining viability in bioinks

    Self-Powered Integrated Tactile Sensing System Based on Ultrastretchable, Self-Healing and 3D Printable Ionic Conductive Hydrogel

    Get PDF
    Self-healing ionic conductive hydrogels have shown significant potential in applications like wearable electronics, soft robotics, and prosthetics because of their high strain sensitivity and mechanical and electrical recovery after damage. Despite the enormous interest in these materials, conventional fabrication techniques hamper their use in advanced devices since only limited geometries can be obtained, preventing proper conformability to the complexity of human or robotic bodies. Here, a photocurable hydrogel with excellent sensitivity to mechanical deformations based on a semi-interpenetrating polymeric network is reported, which holds remarkable mechanical properties (ultimate tensile strain of 550%) and spontaneous self-healing capabilities, with complete recovery of its strain sensitivity after damages. Furthermore, the developed material can be processed by digital light processing 3D printing technology to fabricate complex-shaped strain sensors, increasing mechanical stress sensitivity with respect to simple sensor geometries, reaching an exceptional pressure detection limit below 1 Pa. Additionally, the hydrogel is used as an electrolyte in the fabrication of a laser-induced graphene-based supercapacitor, then incorporated into a 3D-printed sensor to create a self-powered, fully integrated device. These findings demonstrate that by using 3D printing, it is possible to produce multifunctional, self-powered sensors, appropriately shaped depending on the various applications, without the use of bulky batteries.A photocurable hydrogel with excellent sensitivity to mechanical deformation and spontaneous self-healing capabilities is presented. Complex-shaped wearable sensors are fabricated by 3D printing technology, increasing sensitivity with respect to simple sensor geometries. The hydrogel is also used as an electrolyte in a supercapacitor and implemented to create a self-powered, fully integrated strain sensor system.imag

    3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing

    Get PDF
    Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing

    Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds

    Get PDF
    The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives

    In situ generation of silver nanoparticles in PVDF for the development of resistive switching devices

    Get PDF
    It is widely accepted that resistive switching devices (RSDs) are extremely appealing as active components in computer memories and logic gates in electronics, directly enabling neuromorphic functionalities. The aim of this study is to investigate the chemical and electrical properties of a nanocomposite polymer, the active component of the device, in order to characterise its composition and behaviour under electric field. This paper presents the morphological and chemical characterization of an in-situ generated silver – Polyvinylidene fluoride-hexafluoropropylene PVDF-HFP nanocomposite (NC) material. A silver salt is added as precursor to the polymer solution and then, after a film casting step, the nanoparticles generation and growth processes are carried out by way of UV irradiation; the growth and the distribution of in-situ generated silver nanoparticles (NPs) in the polymer matrix are described. The devices, built on a planar electrode structure, undergo an I/V test to explore their resistance states at different switching voltages. Furthermore, after electrical analysis a remarkable R off /R on ratio and a relatively low switching voltage (3 V) are achieved, demonstrating the suitability of the developed material for the next generation of soft, wearable, RSDs

    Single-Step 3D Printing of Silver-Patterned Polymeric Devices for Bacteria Proliferation Control

    Get PDF
    This work describes the fabrication of silver-patterned polymeric devices via light-based 3D printing methods from a tailored resin. An acrylate resin containing silver nitrate (AgNO3) as a silver precursor is employed to generate silver nanoparticles (AgNPs) through the in situ reduction of the metallic salt. The silver-based resin is processed through a customized stereolithography SL-3D printing to fabricate structures with silver-patterned surfaces. This customized SL-printer (emitting at 405 nm) offers the possibility of adjusting the machine settings during the printing process allowing for AgNPs to be selectively generated by modifying the laser settings during the 3D printing step. Thus, the resin photopolymerization and the photoinduced formation of AgNPs-based strands can be sequentially achieved during the same printing process with the same light source and using the same printable resin. The fabricated silver-patterned devices exhibit different surface features that might be exploited in systems working in a marine environment to control biofilm proliferation. As a proof-of-concept, the antimicrobial behavior of the silver-based 3D printed device is tested against environmental bacterial mixed communities via UV–vis spectroscopy and evaluating the absorbance change. Further tests, however, would be needed to reinforce the evidence of the bacteria behavior on the silver-patterned 3D printed devices
    • …
    corecore