40 research outputs found

    A field-effect transistor installation in H-waveguide amplifiers

    No full text
    This article touches upon the problem of practical tealization of microwave low-noise transistor amplifiers. A problem of the amplifier oscillating outside of operating frequency range is considered. A way of microwave chip transistor installation for elimination of this effect is investigated

    Investigation of friction faces by the method of secondary ion-ion emission

    No full text

    Nanostructured MnOxMnO_{x} as highly active catalyst for CO oxidation

    No full text
    Non-stoichiometric Mn-oxides (MnO x and MnO y) were prepared by temperature-programmed oxidation (TPO) of Mn-oxalates, MnC 2O 4·3H 2O and MnC 2O 4·2H 2O. Both oxides provide high specific surface areas (525 m 2 g -1 and 385 m 2 g -1, respectively) and identical CO oxidation reaction rates of 10 -2 molecules nm -2 s -1 (0.017 μmol CO m -2 s -1) at 298 K. A "spinodal" transformation of oxalates into oxides was observed by transmission electron microscopy (TEM). The quantitative evaluation of TPO and temperature-programmed reduction with CO allowed x-values of 1.61, ⋯, 1.67 to be determined for MnO x. The Mn oxidation state in MnO x was found to be 3.4 ± 0.1 by X-ray absorption near-edge structure analysis and X-ray photoelectron spectroscopy. In accordance with the high specific surface area and mixed-type I/IV adsorption isotherms of MnO x, high resolution TEM demonstrated the occurrence of nested micro-rod features along with nanocrystalline particles in the endings of the rods. After CO oxidation MnO and Mn 3O 4 phases were able to be identified in the regions between rods. © 2011 Elsevier Inc. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    High-temperature oxidation of CrN/AlN multilayer coatings §

    No full text
    Abstract Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 8C for 2 h and at 1100 8C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 8C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified. www.elsevier.com/locate/apsus
    corecore