269 research outputs found

    Dynamic three-dimensional echocardiography combined with semi-automated border detection offers advantages for assessment of resynchronization therapy

    Get PDF
    Simultaneous electrical stimulation of both ventricles in patients with interventricular conduction disturbance and advanced heart failure improves hemodynamics and results in increased exercise tolerance, quality of life. We have developed a novel technique for the assessment and optimization of resynchronization therapy. Our approach is based on transthoracic dynamic three-dimensional (3D) echocardiography and allows determination of the most delayed contraction site of the left ventricle (LV) together with global LV function data. Our initial results suggest that fast reconstruction of the LV is feasible for the selection of the optimal pacing site and allows identifying LV segments with dyssynchrony

    Permanent biventricular ICD-implantation in a heart failure second re-do-CABG patient: a case report

    Get PDF
    Biventricular pacing has been suggested in end-stage heart failure. We present a 59-year-old patient undergoing second re-do CABG (coronary artery bypass graft) and carotid artery endarterectomy. Ejection fraction was 15%, QRS-width 175 ms. Following the carotid and CABG procedure, an implanted single-chamber ICD (implantable cardioverter defibrillator) was upgraded to permanent biventricular DDD pacing by implantation of one epicardial left ventricular and one epicardial atrial electrode. At follow-up two months postoperatively ejection fraction had significantly improved to 45%, the patient underwent stress test with adequate load and reported a good quality of life

    The fusion band in V1: a simple ECG guide to optimal resynchronization? An echocardiographic case report

    Get PDF
    BACKGROUND: Patients with left bundle branch block have a preserved right bundle branch conduction and the efficacy of left ventricular pacing could be explained with the fusion between artificial pulse delivered in the left lateral wall and the spontaneous right ventricular activation. Moreover, the efficacy of left ventricular pacing could be enhanced with an optimal timing between the spontaneous right ventricular activation and the left ventricular pulse. CASE PRESENTATION: We evaluated a patient (male, 47 yrs) with surgically corrected mitral regurgitation, sinus rhythm and left bundle branch block, heart failure (NYHA class III) despite medical therapy and low ejection fraction (25%): he was implanted with a biventricular device. We programmed ventricular pacing only through the left ventricular lead. We defined what we called electrocardiographic "fusion band" as follow: programming OFF the stimulator, we recorded the native electrocardiogram and measured, through the device, the intrinsic atrioventricular interval. Then, atrioventricular interval was progressively shortened by steps of 20 ms down to 100 ms. Twelve leads electrocardiogram was recorded at each step. The fusion band is the range of AV intervals at which surface electrocardiogram (mainly in V1 lead) presents an intermediate morphology between the native left bundle branch block (upper limit of the band) and the fully paced right bundle branch block (lower limit). The patient underwent echocardiographic examination at each atrioventricular interval chosen inside the fusion band. The following parameters were evaluated: ejection fraction, diastolic filling time, E wave deceleration time, aortic velocity time integral and myocardial performance index. All the echocardiographic parameters showed an improvement inside the fusion band, with a "plateau" behaviour. As the fusion band in this patient ranged from an atrioventricular delay of 200 ms to an atrioventricular delay of 120 ms, we chose an intermediate atrioventricular delay of 160 ms, presuming that this might guarantee the persistence of fusion even during any possible physiological (autonomic, effort) atrioventricular conduction variation. CONCLUSION: In this heart failure patient with left bundle branch block, tailoring of the atrioventricular interval resynchronized myocardial contraction with left ventricular pacing alone, utilizing a sensed right atrial activity and the surface electrocardiographic pattern

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    Circumferential myocardial strain in cardiomyopathy with and without left bundle branch block

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) has been shown to decrease mortality in 60-70% of advanced heart failure patients with left bundle branch block (LBBB) and QRS duration > 120 ms. There have been intense efforts to find reproducible non-invasive parameters to predict CRT response. We hypothesized that different left ventricular contraction patterns may exist in LBBB patients with depressed systolic function and applied tagged cardiovascular magnetic resonance (CMR) to assess circumferential strain in this population.</p> <p>Methods</p> <p>We determined myocardial circumferential strain at the basal, mid, and apical ventricular level in 35 subjects (10 with ischemic cardiomyopathy, 15 with non-ischemic cardiomyopathy, and 10 healthy controls). Patterns of circumferential strain were analyzed. Time to peak systolic circumferential strain in each of the 6 segments in all three ventricular slices and the standard deviation of time to peak strain in the basal and mid ventricular slices were determined.</p> <p>Results</p> <p>Dyskinesis of the anterior septum and the inferior septum in at least two ventricular levels was seen in 50% (5 out of 10) of LBBB patients while 30% had isolated dyskinesis of the anteroseptum, and 20% had no dyskinesis in any segments, similar to all of the non-LBBB patients and healthy controls. Peak circumferential strain shortening was significantly reduced in all cardiomyopathy patients at the mid-ventricular level (LBBB 9 ± 6%, non-LBBB 10 ± 4% vs. healthy 19 ± 4%; both p < 0.0001 compared to healthy), but was similar among the LBBB and non-LBBB groups (p = 0.20). The LBBB group had significantly greater dyssynchrony compared to the non-LBBB group and healthy controls assessed by opposing wall delays and 12-segment standard deviation (LBBB 164 ± 30 ms vs. non-LBBB 70 ± 17 ms (p < 0.0001), non-LBBB vs. healthy 65 ± 17 ms (p = 0.47)).</p> <p>Conclusions</p> <p>Septal dyskinesis exists in some patients with LBBB. Myocardial circumferential strain analysis enables detailed characterization of contraction patterns, strengths, and timing in cardiomyopathy patients with and without LBBB.</p

    Echo-driven V-V optimization determines clinical improvement in non responders to cardiac resynchronization treatment

    Get PDF
    Echocardiography plays an integral role in the detection of mechanical dyssynchrony in patients with congestive heart failure and in predicting beneficial response to cardiac resynchronization treatment. In patients who derive sup-optimal benefit from biventricular pacing, optimization of atrioventricular delay post cardiac resynchronization treatment has been shown to improve cardiac output. Some recent reports suggest that sequential ventricular pacing may further improve cardiac output. The mechanism whereby sequential ventricular pacing improves cardiac output is likely improved inter and possibly intraventricular synchrony, however these speculations have not been confirmed. In this report we describe the beneficial effect of sequential V-V pacing on inter and intraventricular synchrony, cardiac output and mitral regurgitation severity as the mechanisms whereby sequential biventricular pacing improves cardiac output and functional class in 8 patients who had derived no benefit or had deteriorated after CRT. Online tissue Doppler imaging including tissue velocity imaging, tissue synchronization imaging and strain and strain rate imaging were used in addition to conventional pulsed wave and color Doppler during sequential biventricular pacemaker programming

    Echocardiographic AV-interval optimization in patients with reduced left ventricular function

    Get PDF
    BACKGROUND: Ritter's method is a tool used to optimize AV delay in DDD pacemaker patients with normal left ventricular function only. The goal of our study was to evaluate Ritter's method in AV delay-interval optimization in patients with reduced left ventricular function. METHODS: Patients with implanted DDD pacemakers and AVB III° were assigned to one of two groups according to ejection fraction (EF): Group 1 (EF > 35%) and Group 2 (EF < 35%). AV delay optimization was performed by means of radionuclide ventriculography (RNV) and application of Ritter's method. RESULTS: For each of the patients examined, we succeeded in defining an optimal AV interval by means of both RNV and Ritter's method. The optimal AV delay determined by RNV correlated well with the delay found by Ritter's method, especially among those patients with reduced EF. The intra-class correlation coefficient was 0.8965 in Group 1 and 0.9228 in Group 2. The optimal AV interval in Group 1 was 190 ± 28.5 ms, and 180 ± 35 ms in Group 2. CONCLUSION: Ritter's method is also effective for optimization of AV intervals among patients with reduced left ventricular function (EF < 35%). The results obtained by RNV correlate well with those from Ritter's method. Individual programming of the AV interval is fundamentally essential in all cases

    Reverse left ventricular remodeling is more likely in non ischemic cardiomyopathy patients upgraded to biventricular stimulation after chronic right ventricular pacing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic right ventricular (RV) apical pacing may lead to left ventricular (LV) dyssynchrony and LV dysfunction. In heart failure due to RV pacing, upgrading to biventricular stimulation (CRT) can improve NYHA Class and LV function. A proportion of patients do not respond to upgrading. Aim was to assess whether etiology of LV dysfunction accounts for responses to CRT in RV-paced patients.</p> <p>Methods</p> <p>Sixty-two patients treated by CRT, under RV pacing from 50.2 ± 5.4 months, were studied. Cause of LV dysfunction was non-ischemic (NIC) in 28 and ischemic cardiomyopathy (IC) in 34 patients. Clinical and conventional echocardiographic parameters were available within 1 month before RV pacing, within 1 month before CRT and at 12 ± 2 months of follow-up (FU).</p> <p>Results</p> <p>Decreased LVEF (from 37.0 ± 8.8 to 25.6 ± 6.1%, p <0.001), increased LV end-systolic dimensions (LVESD) (from 48.1 ± 8.6 to 55.2 ± 7.9 mm, p <0.001) and worsened NYHA Class (from 1.9 ± 1.1 to 3.2 ± .6, p < 0.005) were found before CRT, compared to pre RV-pacing. After CRT, 44/62 patients showed a ≥ 1 NYHA Class improvement; >10% decrease in LVESD was observed in 24 patients: 5 with IC, 19 with NIC (p < .0.001). The association between cause of LV dysfunction with >10% decrease in LVESD remained highly significant (p < 0.001) adjusting for pre-CRT QRS duration, NYHA Class, LVEF, LVESD, treatment or RV pacing duration.</p> <p>Conclusions</p> <p>CRT improves functional class even after long-lasting pacing. Reverse remodeling is evident in a small population, more likely with NIC.</p
    corecore