6 research outputs found

    Resistance training and hormone replacement increase MMP-2 activity, quality and quantity of bone in ovariectomized rats

    No full text
    <div><p>Abstract AIMS The aim of the present study was to investigate the influence of resistance training (RT) and hormone replacement (HR) on MMP-2 activity, biomechanical and physical properties bone of ovariectomized (OVX) rats. METHODS Sprague-Dawley female rats were grouped into six experimental groups (n = 11 per group): sham-operated sedentary (SHAM Sed), ovariectomized sedentary (OVX Sed), sham-operated resistance training (SHAM RT), ovariectomized resistance training (OVX RT), ovariectomized sedentary hormone replacement (OVX Sed-HR), and ovariectomized resistance training hormone replacement (OVX RT-HR). HR groups received implanted silastic capsules with a 5% solution of 17β-estradiol (50 mg 17β-estradiol/ml of sunflower oil). In a 12-week RT period (27 sessions; 4-9 climbs) the animals climbed a 1.1 m vertical ladder with weights attached to their tails. Biomechanical and physical bone analyses were performed using a universal testing machine, and MMP-2 activity analysis was done by zymography. RESULTS Bone density and bone mineral content was higher in the RT and HR groups. The MMP-2 activity was higher in the RT and HR groups. The biomechanical analysis (stiffness, fracture load and maximum load) demonstrated better bone tissue quality in the RT associated with HR. CONCLUSION The RT alone as well as when it is associated with HR was efficient in increasing MMP-2 activity, biomechanical and biophysical properties bone of ovariectomized rats.</p></div

    IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer

    No full text
    : Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour&nbsp;cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer

    On the complementary energy in elasticity and its history: the Italian school of nineteenth century

    No full text
    In the formulation of mechanical theories, physicists usually neglect complementary energy, while rational mechanicians and engineers widely use it, especially in continuum physics and structural mechanics. Indeed, in many cases the solutions of elastic problems are found in a simpler way by resorting to complementary, rather than potential, energy. Moseley and Cotterill in England, Menabrea and Castigliano in Italy were among the first to introduce complementary energy in their papers, though implicitly; a more explicit formulation is in Crotti’s papers; and Engesser extended it to non-linear elasticity. In this work we run through the history of complementary energy and search for its possible mechanical meaning
    corecore