165 research outputs found
Probing the in-plane electron spin polarization in Ge/Si0.15 Ge0.85 multiple quantum wells
We investigate spin transport in a set of Ge/Si0.15Ge0.85 multiple quantum wells (MQWs) as a function of the well thickness. We exploit optical orientation to photogenerate spin-polarized electrons in the discrete energy levels of the well conduction band at the Î point of the Brillouin zone. After diffusion, we detect the optically oriented spins by means of the inverse spin-Hall effect (ISHE) taking place in a thin Pt layer grown on top of the heterostructure. The employed spin injection/detection scheme is sensitive to in-plane spin-polarized electrons, therefore, by detecting the ISHE signal as a function of the photon energy, we evaluate the spin polarization generated by optical transitions driven by the component of the light wave vector in the plane of the wells. In this way, we also gain insight into the electron spin-diffusion length in the MQWs. The sensitivity of the technique to in-plane spin-related properties is a powerful tool for the investigation of the in-plane component of the spin polarization in MQWs, which is otherwise commonly inaccessible
Tyrosol-Enriched Tomatoes by Diffusion across the Fruit Peel from a Chitosan Coating: A Proposal of Functional Food
Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit
Acute outcome after a single cryoballoon ablation: Comparison between Arctic Front Advance and Arctic Front Advance PRO
BACKGROUND:
The novel fourth-generation cryoballoon (CB4) potentially allows for enhanced catheter maneuverability and more frequent capture of pulmonary vein (PV) potentials which can be used to monitor real-time PV isolation (PVI). The aim of our study is to compare the acute procedural endpoints between the CB4 and second-generation cryoballoon (CB2).
METHODS:
A single-center retrospective chart review was used to examine 50 consecutive patients with drug-refractory atrial fibrillation undergoing CB4-based PVI. Procedural data and acute success of these patients were compared to 50 propensity-matched controls who underwent cryoballoon ablation procedure using CB2.
RESULTS:
Procedures performed with the CB4 showed significant shorter fluoroscopy time (14.8 \ub1 5.5 vs 18.0 \ub1 6.5 minutes, P = .04), shorter procedure time (58.3 \ub1 15.7 vs 65.3 \ub1 21 minutes, P = .13), and shorter total ablation time (10.8 \ub1 1.5 vs 13.8 \ub1 1.9 minutes, P = .42). The real-time PVI visualization rate was 33.3% in the CB2 group and 74.7% in the CB4 group (P < .001). CB4 was correlated to significant increase of acute real-time recordings with regard to all the single PV (left superior PV: 58% vs 84%, P = .02; left inferior PV: 26% vs 71%, P = .001; right superior PV 29% vs 61%, P = .01; and right inferior PV 19% vs 58%, P = .002).
CONCLUSION:
The CB4 was more often able to capture real-time recordings of PV potentials and the subsequent acute PV isolation
Homodyne detection for measuring internal quantum correlations of optical pulses
A new method is described for determining the quantum correlations at
different times in optical pulses by using balanced homodyne detection. The
signal pulse and sequences of ultrashort test pulses are superimposed, where
for chosen distances between the test pulses their relative phases and
intensities are varied from measurement to measurement. The correlation
statistics of the signal pulse is obtained from the time-integrated difference
photocurrents measured.Comment: 7 pages, A4.sty include
Clinical and pharmacological phase I study with accelerated titration design of a daily times five schedule of BBR3464, a novel cationic triplatinum complex
Objectives To define the maximum tolerated dose (MTD), the toxicity and pharmacokinetic profile of BBR3464, a novel triplatinum complex. Patients and methods Fourteen patients with advanced solid tumors not responsive to previous antitumor treatments received BBR 3464 on a daily Ă 5 schedule every twenty-eighth day. The drug was given as a one-hour infusion with pre-and post-treatment hydration (500 ml in one hour) and no antiemetic prophylaxis. The starting dose was 0.03 mg/m2/day. A modified accelerated titration escalation design was used. Total and free platinum (Pt) concentrations in plasma and urine were assessed by ICP-MS on days 1 and 5 of the first cycle. Results Dose was escalated four times up to 0.17 mg/m2/ day. Short-lasting neutropenia and diarrhea of late onset were dose-limiting and defined the MTD at 0.12 mg/m2 Nausea and vomiting were rare, neither neuro- nor renal toxic effects were observed. BBR3464 showed a rapid distribution phase of 1 hour and a terminal half-life of several days. At 0.17 mg/m2 plasma Cmax and AUC on day 5 were higher than on day 1, indicating drug accumulation. Approximately 10% of the equivalent dose of BBR3464 (2.2%-13.4%) was recovered in a 24-hour urine collection. Conclusions The higher than expected incidence of neutropenia and GI toxicity might be related to the prolonged half-life and accumulation of total and free Pt after daily administrations. Lack of nephrotoxicity and the low urinary excretion support the use of the drug without hydration. The single intermittent schedule has been selected for clinical developmen
Determination of entangled quantum states of a trapped atom
We propose a method for measuring entangled vibronic quantum states of a
trapped atom. It is based on the nonlinear dynamics of the system that appears
by resonantly driving a weak electronic transition. The proposed technique
allows the direct sampling of a Wigner-function matrix, displaying all knowable
information on the quantum correlations of the motional and electronic degrees
of freedom of the atom. It opens novel possibilities for testing fundamental
predictions of the quantum theory concerning interaction phenomena.Comment: 7 pages, 3 figures, to be published in Phys. Rev. A 56 (Aug
Wavepacket reconstruction via local dynamics in a parabolic lattice
We study the dynamics of a wavepacket in a potential formed by the sum of a
periodic lattice and of a parabolic potential. The dynamics of the wavepacket
is essentially a superposition of ``local Bloch oscillations'', whose frequency
is proportional to the local slope of the parabolic potential. We show that the
amplitude and the phase of the Fourier transform of a signal characterizing
this dynamics contains information about the amplitude and the phase of the
wavepacket at a given lattice site. Hence, {\em complete} reconstruction of the
the wavepacket in the real space can be performed from the study of the
dynamics of the system.Comment: 4 pages, 3 figures, RevTex
Schroedinger cat-like states by conditional measurements on a beam-splitter
A scheme for generating Schr\"{o}dinger cat-like states of a single-mode
optical field by means of conditional measurement is proposed. Feeding into a
beam splitter a squeezed vacuum and counting the photons in one of the output
channels, the conditional states in the other output channel exhibit a number
of properties that are very similar to those of superpositions of two coherent
states with opposite phases. We present analytical and numerical results for
the photon-number and quadrature-component distributions of the conditional
states and their Wigner and Husimi functions. Further, we discuss the effect of
realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st
Self-homodyne tomography of a twin-beam state
A self-homodyne detection scheme is proposed to perform two-mode tomography
on a twin-beam state at the output of a nondegenerate optical parametric
amplifier. This scheme has been devised to improve the matching between the
local oscillator and the signal modes, which is the main limitation to the
overall quantum efficiency in conventional homodyning. The feasibility of the
measurement is analyzed on the basis of Monte-Carlo simulations, studying the
effect of non-unit quantum efficiency on detection of the correlation and the
total photon-number oscillations of the twin-beam state.Comment: 13 pages (two-column ReVTeX) including 21 postscript figures; to
appear on Phys. Rev.
Least-squares inversion for density-matrix reconstruction
We propose a method for reconstruction of the density matrix from measurable
time-dependent (probability) distributions of physical quantities. The
applicability of the method based on least-squares inversion is - compared with
other methods - very universal. It can be used to reconstruct quantum states of
various systems, such as harmonic and and anharmonic oscillators including
molecular vibrations in vibronic transitions and damped motion. It also enables
one to take into account various specific features of experiments, such as
limited sets of data and data smearing owing to limited resolution. To
illustrate the method, we consider a Morse oscillator and give a comparison
with other state-reconstruction methods suggested recently.Comment: 16 pages, REVTeX, 6 PS figures include
- âŠ