5,354 research outputs found

    Characterization and comparative evaluation of novel planar electromagnetic sensors

    Get PDF
    The characterization of three types of novel planar electromagnetic sensors: 1) meander; 2) mesh; and 3) interdigital configuration, has been studied and their comparative performance has been evaluated based on their areas of applications. All of them are suitable for inspection and evaluation of system properties without destroying them. The experiments on fabricated sensors have been conducted and the results are presented here. The target application is to use a mixture of different types of sensors to detect plasti

    A low-cost sensing system for quality monitoring of dairy products

    Get PDF
    The dairy industry is in need of a cost-effective, highly reliable, very accurate, and fast measurement system to monitor the quality of dairy products. This paper describes the design and fabrication works undertaken to develop such a system. The techniques used center around planar electromagnetic sensors operating with radio frequency excitation. Computer-aided computation, being fast, facilitates on-line monitoring of the quality. The sensor technology proposed has the ability to perform volumetric penetrative measurements to measure properties throughout the bulk of the product

    Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension

    Get PDF
    A repulsive-type magnetic bearing system has been fabricated in which the rotor of a vertical-shaft-type motor is levitated due to the repulsive force between two sets of permanent magnets. A novel arrangement of permanent magnets has been reported here, which has made the suspension of the rotor possible. The system is planned to be applied for pumping milks and other related products in the New Zealand dairy industry

    Numerical Modeling of a Stenosed Artery Using Mathematical Model of Variable Shape

    Get PDF
    The intention of the present work is to carry out a systematic analysis of flow behavior in a two-dimensional tube (modeled as artery) with a locally variable shaped constrictions. The simulated artery, containing a viscous incompressible fluid representing the flowing blood, is treated to be complaint as well as rigid tube. The shape of the stenosis in the arterial lumen is chosen to be symmetric as well as asymmetric about the middle cross section perpendicular to the axis of the tube in order to improve resemblance to the in-vivo situation. The constricted tube is transformed into a straight tube and the resulting governing equations are solved by a numerical method with Reynolds number and ‘n’, a number giving the shape of the constriction as parameters. The influences of these parameters on the haemodynamic factors like wall shear stress, pressure and velocity have been analyzed. The present findings demonstrate that the flow resistance decreases as the shape of a smooth stenosis changes and maximum resistance is attained in case of a symmetric stenosis. But the length of separation increases in case of asymmetric constrictions and the oscillation in the shear layer appears earlier in case of asymmetric constriction than that in the case of symmetric constriction. Maximum resistance is attained in case of rigid stenosed tube rather than the flexible one

    Effects of Suction and Blowing on Flow Separation in a Symmetric Sudden Expanded Channel

    Get PDF
    A numerical simulation has been carried out to study the laminar flow in a symmetric sudden expanded channel subjected to a uniform blowing/suction speed placed at the lower and upper porous step walls. The governing equations for viscous flow have been solved using finite-difference techniques in pressure-velocity formulation. The results obtained here have been compared with the available experimental and numerical results of similar problems. It is noted that the recirculating region formed near the step walls diminishes in its length for increasing values of blowing speed applied at the porous step walls. For a suitable blowing speed, the recirculation zone disappears completely. The critical Reynolds number for the flow bifurcation (i.e. flow asymmetry) is obtained and it increases with the increase of the blowing speed. The critical Reynolds number for symmetry breaking of the flow decreases with the increasing values of suction speeds. The primary and the secondary recirculating regions formed near the channel walls are controlled using blowing

    Distribution of the superconducting gap in an YNi2B2C film studied by point contact spectroscopy

    Full text link
    The differential resistances Rd=dV/dI(V)R_d=dV/dI(V) of point contacts between a normal metal and a c axis oriented YNi2B2C film (TcT_c = 15.2K) in the superconducting (SC) state have been investigated. Rd(V)R_d(V) contains clear "gap" features connected with processes of Andreev reflection at the boundary between normal metal and superconductor that allow the determination of the SC gap Δ\Delta and its temperature and magnetic field dependence. A distribution of Δ\Delta from Δmin≈\Delta_min\approx 1.5 meV to Δmax≈\Delta_max\approx 2.4 meV is revealed; however the critical temperature TcT_c in all cases corresponded to that of the film. The value 2Δmax/kBTc≈\Delta_max/k_BT_c\approx3.66 is close to the BCS value of 3.52, and the temperature dependence Δ(T)\Delta(T) is BCS-like, irrespective of the actual Δ\Delta value. It is supposed that the distribution of Δ\Delta can be attributed to a gap anisotropy or to a multiband nature of the SC state in YNi2B2C, rather than to the presence of nodes in the gap.Comment: 6 two-column pages, 7 figs; V2: as published, Fig.4 is modifie

    Sharp change over from compound nuclear fission to shape dependent quasi fission

    Full text link
    Fission fragment mass distribution has been measured from the decay of 246^{246}Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the 14^{14}N + 232^{232}Th reaction compared to the 11^{11}B + 235^{235}U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply.Comment: 4 pages,6 figure

    Analysis of Flow Fields in a Flexible Tube with Periodic Constriction

    Get PDF
    Numerical techniques based on pressure-velocity formulation have been adopted to solve approximately, the governing equations for viscous flows through a tube (simulating an artery) with a periodic constriction. The effect of the constriction as well as the rigid of the tube, on the flow characteristics, and its consequences for arterial disease is the focus of this investigation. The unsteady incompressible Navier-Stokes equations are solved by using the finite-difference technique in staggered grid distribution. The haemodynamic factors like wall shear stress, pressure and velocity are analyzed through their graphical representations. Maximum resistance is attained in case of rigid stenosed tube rather than the flexible one. The main result is to contribute that the recirculating region is larger in case of a rigid tube than that of flexible one
    • …
    corecore