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Abstract 
 
The intention of the present work is to carry out a systematic analysis of flow behavior in a two-
dimensional tube (modeled as artery) with a locally variable shaped constrictions. The simulated 
artery, containing a viscous incompressible fluid representing the flowing blood, is treated to be 
complaint as well as rigid tube. The shape of the stenosis in the arterial lumen is chosen to be 
symmetric as well as asymmetric about the middle cross section perpendicular to the axis of the 
tube in order to improve resemblance to the in-vivo situation. The constricted tube is transformed 
into a straight tube and the resulting governing equations are solved by a numerical method with 
Reynolds number and ‘n’, a number giving the shape of the constriction as parameters. The 
influences of these parameters on the haemodynamic factors like wall shear stress, pressure and 
velocity have been analyzed. The present findings demonstrate that the flow resistance decreases 
as the shape of a smooth stenosis changes and maximum resistance is attained in case of a 
symmetric stenosis. But the length of separation increases in case of asymmetric constrictions 
and the oscillation in the shear layer appears earlier in case of asymmetric constriction than that 
in the case of symmetric constriction. Maximum resistance is attained in case of rigid stenosed 
tube rather than the flexible one. 
 
Key words: Axi-symmetric flow, stenosis of variable shape, two-dimensional model, 

staggered grid, finite difference scheme 
 
MSC: 76Dxx, 74S20 
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1. Introduction 
 
Atherosclerosis is a disease which severely influences human health. It is characterized by the 
hardening and thickening of the arterial walls due to the formation of plaque. With the progress 
of disease, the formation of plaque reduces the arterial passage area creating uncharacteristic 
blood flow patterns. As a result, this restriction, if severe enough, can cause individuals to suffer 
cardiac arrest or stroke. Stenoses have a complex influence on haemodynamics through and 
beyond the narrowed arterial segment. Atherosclerotic disease tends to be localized in regions of 
geometrical irregularity such as vessel branch, curved and tapered arteries and stenotic sites. 
Coronary artery disease which is the largest single cause of mortality in developed nations, 
occurs when the coronary arteries narrow to such an extent that they are unable to transport 
sufficient blood to the heart muscle for it to function efficiently. The two main causes of death 
from coronary artery disease are rupture of the plaque causing sudden occlusion of the artery and 
the slow build up of a stenosis in the artery due to atherosclerosis. Reduction in blood flow 
caused by stenosis build up also causes debilitation.  
 
In order to have a complete understanding of the development of the stenosis from the 
physiological point of view, one needs to be fully conversant with the haemodynamic behavior 
of the streaming blood together with the mechanical properties of the vascular wall material 
under physiological conditions. The ability to describe the flow through stenosed vessels would 
provide the possibility of diagnosing the disease in the earlier stages, even before the stenosis 
become clinically relevant, and is the basis for surgical intervention. Appropriate and timely 
intervention by cardiologists greatly reduces the risk of death. Mathematical modeling to predict 
flow through atherosclerotic arteries augment the percipience and experience of cardiologists and 
assist understanding of the genesis and progression of stenosis development. Such techniques 
allow to predict the haemodynamic characteristics as pressure, shear stress, velocity and 
reduction in flow.  
 
Experimentally based models of blood flow rely on empirical data collected by invasive or non-
invasive means. Both types of data collection have their problems. The inaccuracies introduced 
by interactions between the apparatus and the blood are considerably greater than the quantities 
being measured in atherosclerotic coronary arteries. Mathematical modeling provides an 
economical and non-invasive method of studying blood flow through arteries. Two approaches: 
analytical and computational are used. Analytical methods are best studied to explore the 
underlying physics of the situation and to provide real time results for simplified situations. 
Computational fluid dynamic modeling is one of the powerful means to analyze the blood flow 
because we can incorporate the complex nature of blood flow and the blood vessel interactions 
into the study. 
 
In the recent past quite a good number of theoretical and experimental investigations related to 
blood flow in arteries in the presence of stenosis have been carried out with various perspectives 
in the realm of arterial biomechanics. Some attempts to study experimentally steady and 
unsteady flows across a smooth stenosis can be found in Young and Tsai (1973), Ahmed and 
Giddens (1983) etc. For single constriction flow, numerical research investigations are numerous 
Deshpande, et al. (1976), Mishra and Chakravarty (1986), Pontrelli (2001). 
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In reality, this is not generally the case. Arterial stenosis contain many ups and downs and the 
shape is also of asymmetric pattern. In general, the surface irregularities and the asymmetric 
shape of the constriction cause complexity in performing experimental and numerical 
simulations of the flow phenomena. Some sincere attempts have already been made to 
investigate the flow characteristics through vessels with such type of occlusion Back, et al. 
(1984), Johnston and Kilpatrick (1991), Andersson, et. al. (2000), Chakravorty, et al. (2005). The 
disturbances created by the constriction are in the post-stenotic region. The pressure loss in the 
post-stenotic region can reduce the supply of blood through the artery and also impose additional 
load on the heart. The pressure losses are significant when the internal diameter is reduced 
beyond 50% of the nominal value Young (1979). Wall Pressure and shear stress play an 
important role in case of fluctuations of the flow variables in the blood flow downstream of the 
stenosis. This can damage and weaken the internal wall (intima) of the artery. The post-stenotic 
dilatation i.e., widening of the artery in the downstream of the stenosis is due to the increased 
distansibility of the arterial wall induced by the variation of pressure Roach (1963), Lighthill 
(1975). Furthermore, the variability in the distal arterial wall shear stress can result in a 
predilection towards atherosclerosis. 
 
The rheology of blood can best be described by Casson's relationship and the blood exhibits non-
linear shear stress vs rate of shear characteristics especially at low rates of shear. But at relatively 
high rates of shear, the viscosity coefficient asymptotically approaches a constant value. Hence, 
for flow in a large blood vessels, where relatively large shear rates can be expected (during 
systole), a Newtonian description appears to be reasonable. Blood flow in the larger vessels can 
be modeled quite accurately as a Newtonian fluid Pedley (1980), Fung (1981). 
 
Keeping this fact in mind, we investigated the flow pattern in a tube with single constriction. A 
novel mathematical description of the compliant wall geometry (given by time dependent 
equation) is used in this study to provide more realistic model of the wall by giving both 
symmetric as well as asymmetric (about the middle cross section perpendicular to the axis of the 
tube) stenosis-geometry. We have also considered the shape of stenosis geometry as depicted by 
the data collected from a casting of a left circumflex coronary artery with mild, diffuse 
atherosclerotic disease for the validation of our numerical code. When stenoses develop in 
human vasculature, the vessel walls in the vicinity of the stenosis are usually relatively solid but 
when the distensibility of the vessel wall is inducted, they will no longer be rigid. For a flexible 
vessel, the stenosis can not remain static and this feature is quite relevant to the unsteady flow 
mechanism under stenotic condition.  A stable two-stage numerical scheme has been developed 
for this problem in the axi-symmetric approximations. The staggered grid and the finite 
difference discretizations are employed in the present scheme. The flow reached steady state 
after a sufficiently long time. Due attention has been paid on wall shear stress, pressure 
distribution, velocity profiles etc. 
 
 2.Equations of motion 
 
We consider an axi-symmetric and laminar separated flow in a constricted tube, constricted at 
the specified position. The blood flow through an axi-symmetric stenosis can be simulated in 
two-dimensions by making use of cylindrical co-ordinate system. Let (r*,  *, z*) be the 
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cylindrical polar co-ordinates with z*-axis along the axis of symmetry of the tube. The region of 

interest is  ),(0 *
0

* zrr   0   z*   L* (L* being the finite length of the tube). The 
incompressible two-dimensional Navier-stokes equations can be taken for the modeling of 
Newtonian blood flow past multiple constrictions. Let *u and * be the axial and radial velocity 
components respectively, *p the fluid pressure,   the constant density and  denotes the 
kinematic viscosity of the fluid. Let U be the maximum inflow velocity specified in the inlet 

section or test section of the tube. We introduce the non-dimensional variables 0
* / DUtt  , 

0
* / Drr  , ,/ 0

* Dzz 
 00

**
00 /)/()( DDzrzr 

, 
,/* Uuu 

 U/*  , 
2* / Upp   where 0D  

is the diameter of tube in the unoccluded  portion. The governing equations for incompressible 
fluid flow representing conservation of mass and momentum fluxes may be expressed in 
dimensionless variables as 
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where Re = 0UD  /  is the Reynolds number. 
 
 
2.1.   Boundary conditions 
 
Along the axis of symmetry, the normal component of velocity and shear stress vanish so that 
 

,0
),,(





r

trzu
  ),,( trz = 0  on 0r .                                                                      (4) 

 
The velocity boundary conditions on the arterial wall when treated to be rigid are the usual no-
slip conditions given by 
      

0),,(),,(  trztrzu    at r = r0(z),                                         (5a) 
 
while those in the case of flexible wall are 
  

t

tzr
trztrzu





),(

),,(,0),,( 0 on r = r0(z, t).                                                             (5b) 

 
The governing equations of our model assume that the flow regime is laminar. This model also 
assumes the flow to be fully developed at the inlet test section of the tube where the inlet section 
is considered at the position z =0. The inlet velocity conditions are assumed to have a parabolic 
profile corresponding to Hagen-Poiseuille flow through a long circular tube as  
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),,( trzu  = 2(1-r2), ),,( trz  = 0 at z =0.                                                                       (6) 

 
The downstream length (60) [see Fig.1(a)] is sufficiently long so that the reattachment length is 
independent of the length of calculation domain. The zero velocity gradient boundary conditions 
are used at the outlet cross-section of the tube  
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2.2. Initial condition 
 
The initial condition is that there is no flow inside the region of the tube except the parabolic 
velocity profile at the inlet. The flow is gradually developing as time elapses. 
 
2.3.Transformation of basic equations 
 
We consider a co-ordinate stretching in the radial direction which transforms the constricted tube 
into a straight circular tube, given by 

,
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r
R   00 rr                                                                                              (8)  

where the function  )(0 zr is defined  as 
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Here )(0 zr  denotes the radius of the tube in the constricted region. Here   is the distance from 
the start of the segment to the start of the stenosis,  is the distance from the start of the segment 
to the end of the stenosis, n  ( 2 ) is a parameter determining the shape of the stenosis, l  is the 
length of the stenosis, 0L  is the unconstricted radius of the tube. Here the constant 0A is given 
by  
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where h  is the height of the stenosis.  
 
All the profiles, given by equation (9) appear to be time-independent (rigid) and their time-
dependence can easily be introduced in such a way that )().(),( 100 tazrtzr  where 

)cos(1)(1   tkta with the amplitude parameter ,k the phase angle  and the angular 
frequency  . 
  
A schematic diagram of the differently shaped constricted tube geometry considered in this 
analysis is given in Fig.1(a) along with all relevant quantities. The tube under consideration is 
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taken to be of finite length 60 for low Reynolds number flow. But suitable length is taken for the 
case of high Reynolds numbers so that the reattachment length is independent of this 
downstream distance. In the present study, we have taken n = 2, 4, 6 so that the symmetric 
(about its center), slightly asymmetric and severely asymmetric constrictions of width 14 are 
developed respectively.  
  
3. Numerical computations 
 
The transformed governing equations for viscous, incompressible fluid flows are discretized 
using finite-difference approximations. The well known staggered grid proposed by Harlow and 
Welch (1965) is used in the present work. Discretization of the continuity equation at (i,j) cell 
delivers  
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where ubcutc , are defined as follows. 
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Considering the source, convective and diffusive terms at the nth time level, the momentum 
equation in z -direction in finite difference form may be put as  
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where the terms  pbpt , and 
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The finite difference equation approximating the momentum equation in the R-direction is 
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Here 
n

jiVcd ,  is the Discretization of convective and diffusive terms of  -momentum equation at 

the n-th time level at cell (i, j). The diffusive and the convective terms in the  -momentum 
equation are differenced similar to that in u -momentum for the convective flux. The Poisson 
equation for pressure is obtained by combining the discretized form of the momentum and 
continuity equation. The final form of the Poisson equation for pressure is  
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where 21 ,,,,, AADCBA all are given in Layek, et al. (2005). Here 
n

jiDi , is the finite-
difference representation of the divergence of the velocity field at cell (i, j).  
 
Then the final form of Poisson equation is solved iteratively with the help of appropriate 
boundary conditions and then the pressure-velocity correction formulae are invoked until we 
achieve a satisfactory level of divergence value.   
 
3.1.   Stability criteria of the scheme 
 
The time-step ( t ) is calculated by the two criteria given below. First the fluid can not move 
through more than one cell in one time step (Courant, Friedrichs and Lewy condition). So, the 
time step must satisfy the following criteria 
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where minimum is taken in the global sense. Secondly, momentum must not diffuse more than 
one cell in one time step. This condition, which is related to the viscous effects, implies 
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Denoting the right hand side of (14) and (15) by 1t  and 2t  respectively we find that both 
these inequalities are satisfied if the time step t  satisfies 
 

t ][ 2,1 ttMin  .                                                                     (16) 
 
Hence, in our computations we take 
 

t =  ,, 21 ttcMin                                                                       (17) 
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where c is a constant lying between 0.2 to 0.4. A typical value of t  is 0.005 for z  = 0.05 and 
R  = 0.05.   

 
4. Results and discussions 
 
For the purpose of numerical computation of the desired quantities of major physiological 
significance, numerical values of the specific geometry of the stenosed artery considered for 
simulations and the parameters involved in this study have been ranged around some typical 
values in order to obtain results of physiological interest: 
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The computed results are obtained following the above mentioned numerical scheme [taking 

t =0.005 for z  = 0.05 and R  = 0.05] for various physical quantities of major physiological 
significance. In order to have their quantitative measures they are all exhibited through the 
figures 3-11 and discussed at length. 
 
Arterial constriction, whilst having the general trend of smooth curve, contains many small 
valleys and ridges, analogous to mountain range. For the purpose of deeper investigation into this 
problem, the published data Back, et al. (1984) are used to define the outline of the stenosis 
Fig.1(b). To compare our results with Back, et al. (1984), Johnston and Kilpatrick (1991), 
Andersson, et al. (2000), the arterial wall distensibility is disregarded in some cases but attention 
also has been paid on compliant wall model.  
 
A comparison of wall shear stress is made (see Fig.2(a)) with the present results obtained using a 
two-stage numerical scheme for the case of asymmetric single constriction with irregular surface 
geometry (see Fig.1(b)) for the Reynolds numbers Re=20 and Re=1000. Our results agree well 
with that of Johnston and Kilpatrick (1991).  
 
The present results involving the pressure drop in case of irregular stenosis for different 
Reynolds number from 10 to 1000 are compared with the numerical results of Andersson, et al. 
(2000) and the experimental results of Back, et al. (1984) in Fig.2(b). The comparison in Fig.2(b) 
shows considerable agreement with the experimental results of Back, et al. (1984). But there is a 
little variation with the numerical results of Andersson, et al. (2000). It seems that the unsteady 
flow mechanism of the present investigation is responsible for this. 
 
In presence of a narrowing i.e. a constriction, the flow exhibits a resistance and hence an increase 
of the shear stress (i.e., the wall vorticity) and a pressure drop. These are quantities of 
physiological relevance.  
 
Wall pressure distribution is very much important because the post-stenotic dilatation due to 
arterial damage is caused by the variation of pressure associated with the complex flow structure. 
Pressure fluctuations on the arterial wall produce acoustic signals that can be detected externally 
Mittal, et al. (2001). 
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A rapid fall in pressure is observed (Fig.3) as the occlusion is approached and the local minimum 
is attained corresponding to the separation point in case of symmetric and asymmetric 
constrictions (n = 2 & 4).The two curves are of similar nature and the comparing pressure 
distribution curves over the two stenoses (symmetric and asymmetric) show that the asymmetric 
stenosis predicts higher values than the symmetric stenosis (Fig.3). With increasing degree of 
stenosis, the reduction in pressure at the throat decreases significantly in case of symmetric as 
well as asymmetric constrictions. 
 
Fig.4 exhibits the variation of center line velocity in axial direction at Re = 600 for differently 
shaped stenoses (taking n = 2, 4 & 6). It is very clear from the figure that the maximum centre 
line velocity occurs slightly in the downstream of the constriction due to formation of 
recirculation zone near the wall as a result of flow separation. The symmetric geometry (of the 
constriction) (symmetric about its center) (i.e., n = 2) is generally narrower in the converging 
part of the stenosis. So it induces an excess flow acceleration as compared to asymmetric 
stenosis (n = 4). The centre line velocity is seen to take a larger distance to recover its initial 
value as Reynolds number increases. 
 
The wall shear stress is of physiological importance and there exist two contradictory hypothesis 
about its role in the initiation of atherosclerosis. No reliable method seems to be available for 
computing wall shear stress. In this situation, the numerical simulation provides some insight 
into the level of the wall shear stress involved. Fig.5 is the graphical representation of wall shear 
stress for symmetric (n = 2), slightly asymmetric (n = 4) and severely asymmetric (n = 6) 
stenoses at the Reynolds number Re = 220 for 51% area reduction (i.e., for h = 0.3). It is noticed 
that flow separates in case of severely asymmetric constriction (n = 6), flow separation starts in 
case of slightly asymmetric constriction (n = 4), but no separation takes place in case of 
symmetric constriction (n = 2).   
  
Fig.6 illustrates the variation of wall shear stress along the solid as well as flexible surfaces for 
differently shaped constrictions at Re = 600 and for h = 0.5. It is seen that the location of the 
peak vorticity occurs just before the minimum constriction plane for both rigid and flexible wall 
models. The magnitude of the wall shear stress values increase rapidly when the flow approaches 
to the constriction and reaching a peak value near the minimum constriction plane in all cases. At 
a location downstream of this, the wall shear stress decreases rapidly and reverses to negative 
values when separation begins at the wall of the tube.  
 
The places of zero vorticity are the locations of stagnation points as well as the separation and 
reattachment points of the attached vortices. It is also noted that the peak value of wall shear 
stress (in the converging part of the stenosis) decreases as the shape of a smooth stenosis changes 
and maximum wall shear stress is attained in case of a symmetric stenosis (n=2). This is in 
perfect conformity with the analytical study of Haldar (1985). For both rigid and flexible arteries, 
an almost similar trend is observed in the respective distributions of wall shear stress differing in 
magnitudes only. Peak value of wall shear stress is maximum in case of rigid tube rather than 
that of flexible one. Here, the point of separation is shifted further towards downstream in case of 
rigid tube compared to that of flexible tube. 
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Fig.7 exhibits the effect of severity of the stenosis on both symmetric and asymmetric cases. 
Peak value of wall shear stress and the length of separation zone increase in both the cases as the 
height of the constriction increases. 
 
In Fig.8, the distributions of wall shear stresses ( w ) for the Reynolds numbers Re = 600, 1000 
are given. At the highest Reynolds number considered, exactly the same situation occurs in the 
converging part of the stenosis, as shown in Fig.9(a). In the downstream diverging part, on the 
other hand, the deceleration of the fluid is more modest than at low Reynolds number and the 
axial velocity is still far from its asymptotic limit (2) at the downstream end of the stenosis in 
both symmetric and asymmetric cases. The length of separation increases in case of asymmetric 
constrictions and the point of separation and also the point of reattachment are shifted further 
towards downstream in those cases. 
 
The fluctuation level in case of shear stress on the wall is also of considerable interest. It has 
been noted that highly variable wall shear stress can also result in a predilection toward 
atherosclerosis. The variability in shear stress can prevent endothelial cells from aligning in the 
direction of the flow, thereby making the intima more permeable to the entry of monocytes and 
lipoproteins. Oscillatory nature of wall shear stress at Re=1000 and h=0.3 is noticed in Fig.9(a). 
From this figure, it is very clear that oscillation in the shear layer appears earlier in case of 
asymmetric constriction than the symmetric constriction. Length of separation increases in case 
of asymmetric constrictions and the point of separation and also the point of reattachment are 
shifted further towards downstream in those cases. 
 
The unsteady response of the flow phenomena through distensible artery seems to have major 
significance in realistic blood flow under stenotic condition. Keeping this in mind the behavior 
of stream wise velocity component with time for Re = 600, at z = 11(where z is the distance from 
the inlet of the tube) (i.e., in the constricted region) for 51 % area reduction for asymmetric 
constriction (n = 6) for both rigid and flexible arteries is presented in Fig.9(b). Both the rigid and 
flexible arteries experience large distortions on stream wise velocity component at the onset of 
time followed by uniformly undulating stream wise velocity in case of rigid artery and an 
uniform stream wise velocity for the flexible one for rest of the time considered here. 
 
In Fig.10(a), the oscillation in the stream wise velocity component with frequency 0.2 is noted at 
z = 11 (where z is the distance from the inlet of the tube) (i.e., in the constricted region) for 
Re=1000 for 51 % area reduction for asymmetric constriction (n = 6). In the upstream of the 
constriction, no oscillation is noticed. The time history of stream wise velocity component at z = 
24 (i.e. where the constriction ends) for Re = 1000 and for 51% blockage for asymmetric 
constriction (n = 6) has been shown in Fig.10(b). The different type of oscillation but with same 
frequency is noticed. 
 
The streamline patterns are shown in Fig.11(a), (b), (c) for symmetric (n = 2), slightly 
asymmetric (n = 4) and severely asymmetric (n = 6) constrictions respectively. These figures 
clearly exhibit the formation of separating bubbles after the constriction in each case. It is also 
noticed that the length of circulatory bubbles increases with the asymmetry of the constriction. 
Asymmetry constriction plays a vital role in flow separation.   
 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 3 [2008], Iss. 2, Art. 11

https://digitalcommons.pvamu.edu/aam/vol3/iss2/11



318                                                                                   Mukhopadhyay and Layek 

 

5. Conclusion 
 
A mathematical model of arterial flow through differently shaped stenosis is presented here. The 
comparison of the results of present study with the existing ones based on the Newtonian 
characterization of blood, the rigid artery and the steady state situation reveals good agreement 
and hence the present model would certainly give better insight into the complex flow 
phenomena in the stenotic conditions. Potential improvement over the previous models has been 
made by the incorporation of vessel wall distensibility and the effect of unsteadiness. The 
development of the separation zones towards the diverging section of the constriction is believed 
to be the prime areas for further deposition of atherosclerotic plaques. The role of asymmetry 
constriction in a realm of the arterial plaque may be useful for early detection of cardiovascular 
diseases.    
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Figure Captions 
 
Fig.1(a) Geometry of the tube with symmetric as well as asymmetric constrictions. 
 
Fig.1(b) Profile for irregular stenosis (Back, et al. (1984)). 
 
Fig.2(a) Comparison of wall shear stresses for irregular model at Reynolds numbers Re = 20 and 

1000. 
 
Fig.2(b) Comparison of non dimensional pressure drop. 
 
Fig.3 Pressure distribution along the wall in a tube with symmetric and asymmetric constriction 

of same height h = 0.3 and at Re = 600. 
 
Fig.4 Centre line u-velocity in a tube with symmetric and asymmetric constriction of same height 

h = 0.3 at Re = 600. 
 
Fig.5 Wall shear stress distribution in a tube with symmetric as well as asymmetric constrictions 

of same height h = 0.3 at Re = 220. 
 
Fig.6 Wall shear stress distribution in a rigid as well as flexible tube with symmetric and 

asymmetric constrictions of same height h = 0.5 at Re = 600. 
 
Fig.7 Comparison of wall shear stress in a tube with symmetric as well as asymmetric 

constrictions at Re = 600. 
 
Fig.8 Comparison of wall shear stress in a tube with symmetric as well as asymmetric 

constrictions of same height h = 0.3. 
 
Fig.9(a) Wall shear stress distribution in a tube with symmetric as well as asymmetric 

constrictions of same height h = 0.3 at Re =1000. 
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Fig.9(b) Time history of stream wise velocity component at Re = 600 in a rigid as well as 

flexible tube with asymmetric constriction (n = 6) of height h = 0.3 at z = 11 (in the 
constricted region). 

 
Fig.10(a) Time history of stream wise velocity component at Re = 1000 in a tube with 

asymmetric constriction (n = 6) of height h = 0.3 at z = 11 (in the constricted region). 
 
Fig.10(b) Time history of stream wise velocity component at Re = 1000 in a tube with 

asymmetric constriction (n = 6) of height h = 0.3 at z = 24. 
 
Fig.11(a) Streamlines in a tube with symmetric constriction of 75% area reduction at Re = 600. 
 
Fig.11(b) Streamlines in a tube with asymmetric constriction (n = 4) of 75% area reduction at Re 

= 600. 
 
Fig.11(c) Streamlines in a tube with asymmetric constriction (n = 6) of 75% area reduction at Re 

= 600. 
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