1,195 research outputs found

    Monitoring currents in cold-atom circuits

    Full text link
    Complex circuits of cold atoms can be exploited to devise new protocols for the diagnostics of cold-atoms systems. Specifically, we study the quench dynamics of a condensate confined in a ring-shaped potential coupled with a rectilinear guide of finite size. We find that the dynamics of the atoms inside the guide is distinctive of the states with different winding numbers in the ring condensate. We also observe that the depletion of the density, localized around the tunneling region of the ring condensate, can decay in a pair of excitations experiencing a Sagnac effect. In our approach, the current states of the condensate in the ring can be read out by inspection of the rectilinear guide only, leaving the ring condensate minimally affected by the measurement. We believe that our results set the basis for definition of new quantum rotation sensors. At the same time, our scheme can be employed to explore fundamental questions involving dynamics of bosonic condensates.Comment: Figures are enlarged. Section IV is added. Journal reference adde

    A PRELIMINARY INVESTIGATION INTO THERMAL SPRAY AND OTHER METAL/POLYMER DEPOSITION PROCESSES AND THEIR POTENTIAL USE IN THE OIL INDUSTRY

    Get PDF
    Polymeric coatings are being used in a raising number of applications, contributing to protection against weather conditions and localized corrosion, also reducing erosion wear. The coatings may be deposited by various processes and thermal spray is being recently investigated as a new alternative. This paper reports an exploratory study into various polymer deposition processes and evaluates their influence on the quality of the produced coating, concerning dispersion, cohesiveness and adhesion onto steel substrates. Different content aluminum/MDPE (medium density polyethylene) mixtures and processing parameters were studied as an attempt to identify the most promising parameters regarding their future application to produce coatings for the oil industry. The material characterization was carried out via mechanical testing (ASTM D638). The coating adhesion was evaluated by bend and ASTM C633-79 tensile tests. A microscopy evaluation of the coatings was also carried out. The produced films showed low friction surfaces and adequate adhesion to steel substrates. The presence of MAN (maleic anhydride) in the composite was responsible for the MDPE to recover its ductility, with a small increase of strength and rigidity, as well as a significant enhancement of coating adhesion to substrate

    Mixed Early and Late-Type Properties in the Bar of NGC 6221: Evidence for Evolution along the Hubble Sequence?

    Get PDF
    Rotation curves and velocity dispersion profiles are presented for both the stellar and gaseous components along five different position angles (P.A.=5, 50, 95, 125 and 155 degrees) of the nearby barred spiral NGC 6221. The observed kinematics extends out to about 80" from the nucleus. Narrow and broad-band imaging is also presented. The radial profiles of the fluxes ratio [NII]/Halpha reveal the presence of a ring-like structure of ionized gas, with a radius of about 9" and a deprojected circular velocity of about 280 km/s. The analysis of the dynamics of the bar indicates this ring is related to the presence of an inner Lindblad resonance (ILR) at 1.3 kpc. NGC6221 is found to exhibit intermediate properties between those of the early-type barred galaxies: the presence of a gaseous ring at an ILR, the bar edge located between the ILR's and the corotation radius beyond the steep rising portion of the rotation curve, the dust-lane pattern, and those of the late-type galaxies: an almost exponential surface brightness profile, the presence of Halpha regions along all the bar, the spiral-arm pattern. It is consistent with scenarios of bar-induced evolution from later to earlier-type galaxies.Comment: 1 File ds7406.tar.gz which contains: one latex file (ds7406.tex), and 10 encsulated postscript figures (ds7406f**.eps). To be compiled with aa-l latex2e macro style. To be published in A&A Sup. Serie

    Adiabatic dynamics of a quantum critical system coupled to an environment: Scaling and kinetic equation approaches

    Full text link
    We study the dynamics of open quantum many-body systems driven across a critical point by quenching an Hamiltonian parameter at a certain velocity. General scaling laws are derived for the density of excitations and energy produced during the quench as a function of quench velocity and bath temperature. The scaling laws and their regimes of validity are verified for the XY spin chain locally coupled to bosonic baths. A detailed derivation and analysis of the kinetic equation of the problem is presented.Comment: 15 pages, 13 figure

    Finite-Temperature Scaling of Magnetic Susceptibility and Geometric Phase in the XY Spin Chain

    Full text link
    We study the magnetic susceptibility of 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits the finite-temperature scaling behavior. This scaling behavior of the magnetic susceptibility in 1D quantum XY model, due to the quantum-classical mapping, can be easily experimentally tested. Furthermore, the universality in the critical properties of the magnetic susceptibility in quantum XY model is verified. Our study also reveals the close relation between the magnetic susceptibility and the geometric phase in some spin systems, where the quantum phase transitions are driven by an external magnetic field.Comment: 6 pages, 4 figures, get accepted for publication by J. Phys. A: Math. Theo

    Quantum phase transitions in the Kondo-necklace model: Perturbative continuous unitary transformation approach

    Full text link
    The Kondo-necklace model can describe magnetic low-energy limit of strongly correlated heavy fermion materials. There exist multiple energy scales in this model corresponding to each phase of the system. Here, we study quantum phase transition between the Kondo-singlet phase and the antiferromagnetic long-range ordered phase, and show the effect of anisotropies in terms of quantum information properties and vanishing energy gap. We employ the "perturbative continuous unitary transformations" approach to calculate the energy gap and spin-spin correlations for the model in the thermodynamic limit of one, two, and three spatial dimensions as well as for spin ladders. In particular, we show that the method, although being perturbative, can predict the expected quantum critical point, where the gap of low-energy spectrum vanishes, which is in good agreement with results of other numerical and Green's function analyses. In addition, we employ concurrence, a bipartite entanglement measure, to study the criticality of the model. Absence of singularities in the derivative of concurrence in two and three dimensions in the Kondo-necklace model shows that this model features multipartite entanglement. We also discuss crossover from the one-dimensional to the two-dimensional model via the ladder structure.Comment: 12 pages, 6 figure

    Nanocellulose filled biobased polyurethane foams.

    Get PDF
    In this paper, nanocellulose (NC) dispersed in glycerin was incorporated into polyurethane (PU) biobased foams, using castor oil and glycerin, in a ratio of 3:1, as a biopolyol, produced by free-rise pouring method. Firstly, the morphologicals properties, measureds by scanning electronic microscopy (SEM) images, were investigated and, after, the apparent density and compressives properties were measureds. The results indicated efficience in the preparation method for the biofoams and the filled foams presented a decrease in the cellular anisotropy and linear cell density and an increase in cell diameter, with a more homogenous cell structure. These morphologicals properties justify the modifications caused by the fillers in the biofoams, a larger cell, with less orientation, caused a decrease in the values of the apparent density and consequently lower values in compressive mechanical properties

    Bose-Einstein condensation and entanglement in magnetic systems

    Full text link
    We present a study of magnetic field induced quantum phase transitions in insulating systems. A generalized scaling theory is used to obtain the temperature dependence of several physical quantities along the quantum critical trajectory (H=HCH=H_{C}, T→0T\to0) where HH is a longitudinal external magnetic field and HCH_{C} the critical value at which the transition occurs. We consider transitions from a spin liquid at a critical field HC1H_{C1} and from a fully polarized paramagnet, at HC2H_{C2}, into phases with long range order in the transverse components. The transitions at HC1H_{C1} and HC2H_{C2} can be viewed as Bose-Einstein condensations of magnons which however belong to different universality classes since they have different values of the dynamic critical exponent zz. Finally, we use that the magnetic susceptibility is an entanglement witness to discuss how this type of correlation sets in as the system approaches the quantum critical point along the critical trajectory, H=HC2H=H_{C2}, T→0T\to0.Comment: 7 pages, 1 Table; accepted version; changes in text and new reference

    Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice

    Full text link
    We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the discrete Gross-Pitaevskii equation. We suggest to use imperfect time-reversal of system's dynamics known as Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before and after the time-reversal. We support the theoretical analysis by direct numerical simulations demonstrating that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss possible values of experimental parameters required for implementing this proposal

    Asymmetry of bipartite quantum discord

    Full text link
    It is known from the analysis of the density matrix for bipartite systems that the quantum discord (as a measure of quantum correlations) depends on the particular subsystem chosen for the projective measurements. We study asymmetry of the discord in a simple physical model of two spin-1/2 particles with the dipole-dipole interaction governed by the XY Hamiltonian in the inhomogeneous magnetic field. The dependence of the above discord asymmetry on the Larmour frequencies at both T=0 (the ground state) and T>0T>0 has been investigated. It is demonstrated, in particular, that the asymmetry is negligible for high temperatures but it may become significant with the decrease in temperature.Comment: 5 pages 3 figure
    • …
    corecore