63 research outputs found

    Avaliação de atrativos para monitoramento de drosophila suzukii em pomar comercial de framboesa.

    Get PDF
    Drosophila suzukii (Diptera: Drosophilidae), conhecida como drosófila da asa manchada (SWD) ou suzuki, é uma praga quarentenária nativa da Ásia em expansão mundial na atualidade. Em 2008, SWD foi coletada nos EUA (Califórnia) e, desde então, registrada em outros estados americanos (WALSH et al. 2011) e também na Europa (CINI et al. 2012). No Brasil, a praga foi detectada no ano de 2014 ocasionando danos na ordem de 30% em cultivos de morango no Estado do Rio Grande do Sul (SANTOS, 2014a). Os danos são causados pela alimentação das larvas em frutos ainda fixos às plantas, e pela introdução de patógenos no local da oviposição. O fruto atacado entra em colapso exibindo intensa perda de líquidos. Entre os hospedeiros da SWD estão as fruteiras que produzem frutos de epiderme fina como, por exemplo, os pequenos frutos: morango, framboesa, amora-preta e o mirtilo. Em se tratando de uma espécie recentemente introduzida no Brasil, poucas são as informações sobre a eficiência de atrativos para monitoramento das populações. O vinagre de maçã tem sido usado em vários estudos científicos, sendo até sugerido como atrativo para o monitoramento da espécie no Brasil (SANTOS, 2014b). Apesar disto, a atratividade é apontada como de curta duração e de baixa seletividade. Assim, Santos (2016) recomenda, em substituição ao vinagre de maçã, o uso de um atrativo à base de fermento biológico, açúcar e água, o qual tem se mostrado promissor e seletivo para monitoramento de SWD. Nos 24 EUA, após extensa avaliação laboratorial e de campo, foram isolados componentes químicos essenciais da atratividade de D. Suzukii, os quais estão sendo produzidos e comercializados em forma de dispenser, com os nomes comerciais de Pherocon® SWD e Scentry® SWD. Como inexistem informações sobre a eficiência e a seletividade de tais produtos para o monitoramento da suzuki no Brasil, foi planejado o presente estudo, cujo objetivo foi o de avaliar a captura e a seletividade de atrativos e de misturas no monitoramento de D. suzukii em pomar de framboesa no município de Vacaria, RS.Resumo 158

    Residue 82 of the Chikungunya Virus E2 Attachment Protein Modulates Viral Dissemination and Arthritis in Mice

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has reemerged to cause profound epidemics of fever, rash, and arthralgia throughout sub-Saharan Africa, Southeast Asia, and the Caribbean. Like other arthritogenic alphaviruses, mechanisms of CHIKV pathogenesis are not well defined. Using the attenuated CHIKV strain 181/25 and virulent strain AF15561, we identified a residue in the E2 viral attachment protein that is a critical determinant of viral replication in cultured cells and pathogenesis in vivo. Viruses containing an arginine at E2 residue 82 displayed enhanced infectivity in mammalian cells but reduced infectivity in mosquito cells and diminished virulence in a mouse model of CHIKV disease. Mice inoculated with virus containing an arginine at this position exhibited reduced swelling at the site of inoculation with a concomitant decrease in the severity of necrosis in joint-associated tissues. Viruses containing a glycine at E2 residue 82 produced higher titers in the spleen and serum at early times postinfection. Using wild-type and glycosaminoglycan (GAG)-deficient Chinese hamster ovary (CHO) cell lines and soluble GAGs, we found that an arginine at residue 82 conferred greater dependence on GAGs for infection of mammalian cells. These data suggest that CHIKV E2 interactions with GAGs diminish dissemination to lymphoid tissue, establishment of viremia, and activation of inflammatory responses early in infection. Collectively, these results suggest a function for GAG utilization in regulating CHIKV tropism and host responses that contribute to arthritis

    Epigenetically-Inherited Centromere and Neocentromere DNA Replicates Earliest in S-Phase

    Get PDF
    Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position

    Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Get PDF
    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions

    Spatiotemporal processing of somatosensory stimuli in schizotypy

    Get PDF
    Unusual interaction behaviors and perceptual aberrations, like those occurring in schizotypy and schizophrenia, may in part originate from impaired remapping of environmental stimuli in the body space. Such remapping is contributed by the integration of tactile and proprioceptive information about current body posture with other exteroceptive spatial information. Surprisingly, no study has investigated whether alterations in such remapping occur in psychosis-prone individuals. Four hundred eleven students were screened with respect to schizotypal traits using the Schizotypal Personality Questionnaire. A subgroup of them, classified as low, moderate, and high schizotypes were to perform a temporal order judgment task of tactile stimuli delivered on their hands, with both uncrossed and crossed arms. Results revealed marked differences in touch remapping in the high schizotypes as compared to low and moderate schizotypes. For the first time here we reveal that the remapping of environmental stimuli in the body space, an essential function to demarcate the boundaries between self and external world, is altered in schizotypy. Results are discussed in relation to recent models of 'self-disorders' as due to perceptual incoherence

    Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist

    Get PDF
    Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant

    Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria

    Get PDF
    Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIR and HLA in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIR and HLA so far associated with immunity to malaria.This work was supported through the DELTAS Africa Initiative (Grant no. 107743), that funded Stephen Tukwasibwe through PhD fellowship award, and Annettee Nakimuli through group leader award. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Science (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (Grant no. 107743) and the UK government. Francesco Colucci is funded by Wellcome Trust grant 200841/Z/16/Z. The project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 695551) for James Traherne and John Trowsdale. Jyothi Jayaraman is a recipient of fellowship from the Centre for Trophoblast Research
    corecore