27 research outputs found

    Intra-radicular dentin treatments and retention of fiber posts with self-adhesive resin cements

    Get PDF
    The aim of this study was to evaluate the effect of treating intraradicular dentin with irrigating solutions on the retention of glass-fiber posts luted with self-adhesive resin cement. Bovine incisors were endodontically treated, and 9-mm-deep postholes were prepared. Before inserting the cement, the root canals were irrigated with various solutions: 11.5% polyacrylic acid for 30 s, 17% EDTA for 60 s, or 5% NaOCl for 60 s, respectively. Irrigation with distilled water was used in the control group. After all specimens had been rinsed with distilled water, the excess moisture was removed and the posts were luted using either BisCem (Bisco) or RelyX Unicem clicker (3M ESPE). Seven days after luting, the specimens were sectioned transversally into 1-mm-thick slices, which were submitted to push-out testing on a mechanical testing machine. Bond strength data (n = 6 per group) were analyzed by two-way ANOVA and Student-Newman-Keuls' test (α = 0.05). For Unicem, EDTA showed lower bond strength than the other solutions, which had similar results. For BisCem, EDTA showed higher bond strength than the other treatments, while application of NaOCl yielded higher bond strength than polyacrylic acid whereas the control group had intermediate results. In conclusion, irrigating root canals before insertion of self-adhesive resin cements, especially EDTA, might interfere with retention of the fiber posts

    Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods

    No full text
    The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard—based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs (Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules
    corecore