2,366 research outputs found

    Exponential asymptotics and gravity waves

    Get PDF
    The problem of irrotational inviscid incompressible free-surface flow is examined in the limit of small Froude number. Since this is a singular perturbation, singularities in the flow field (or its analytic continuation) such as stagnation points, or corners in submerged objects or on rough beds, lead to a divergent asymptotic expansion, with associated Stokes lines. Recent techniques in exponential asymptotics are employed to observe the switching on of exponentially small gravity waves across these Stokes lines. As a concrete example, the flow over a step is considered. It is found that there are three possible parameter regimes, depending on whether the dimensionless step height is small, of the same order, or large compared to the square of the Froude number. Asymptotic results are derived in each case, and compared with numerical simulations of the full nonlinear problem. The agreement is remarkably good, even at relatively large Froude number. This is in contrast to the alternative analytical theory of small step height, which is accurate only for very small steps

    Universality of efficiency at maximum power

    Get PDF
    We investigate the efficiency of power generation by thermo-chemical engines. For strong coupling between the particle and heat flows and in the presence of a left-right symmetry in the system, we demonstrate that the efficiency at maximum power displays universality up to quadratic order in the deviation from equilibrium. A maser model is presented to illustrate our argument.Comment: 4 pages, 2 figure

    Binary black hole detection rates in inspiral gravitational wave searches

    Full text link
    The signal-to-noise ratios (SNRs) for quasi-circular binary black hole inspirals computed from restricted post-Newtonian waveforms are compared with those attained by more complete post-Newtonian signals, which are superpositions of amplitude-corrected harmonics of the orbital phase. It is shown that if one were to use the best available amplitude-corrected waveforms for detection templates, one should expect SNRs in actual searches to be significantly lower than those suggested by simulations based purely on restricted waveforms.Comment: 9 pages, 1 figur

    Critical Behaviour of Non-Equilibrium Phase Transitions to Magnetically Ordered States

    Full text link
    We describe non-equilibrium phase transitions in arrays of dynamical systems with cubic nonlinearity driven by multiplicative Gaussian white noise. Depending on the sign of the spatial coupling we observe transitions to ferromagnetic or antiferromagnetic ordered states. We discuss the phase diagram, the order of the transitions, and the critical behaviour. For global coupling we show analytically that the critical exponent of the magnetization exhibits a transition from the value 1/2 to a non-universal behaviour depending on the ratio of noise strength to the magnitude of the spatial coupling.Comment: 4 pages, 5 figure

    A heat pump at a molecular scale controlled by a mechanical force

    Full text link
    We show that a mesoscopic system such as Feynman's ratchet may operate as a heat pump, and clarify a underlying physical picture. We consider a system of a particle moving along an asymmetric periodic structure . When put into a contact with two distinct heat baths of equal temperature, the system transfers heat between two baths as the particle is dragged. We examine Onsager relation for the heat flow and the particle flow, and show that the reciprocity coefficient is a product of the characteristic heat and the diffusion constant of the particle. The characteristic heat is the heat transfer between the baths associated with a barrier-overcoming process. Because of the correlation between the heat flow and the particle flow, the system can work as a heat pump when the particle is dragged. This pump is particularly effective at molecular scales where the energy barrier is of the order of the thermal energy.Comment: 7 pages, 5 figures; revise

    Testing the multipole structure and conservative dynamics of compact binaries using gravitational wave observations: The spinning case

    Get PDF
    In an earlier work [S. Kastha et al., PRD {\bf 98}, 124033 (2018)], we developed the {\it parametrized multipolar gravitational wave phasing formula} to test general relativity, for the non-spinning compact binaries in quasi-circular orbit. In this paper, we extend the method and include the important effect of spins in the inspiral dynamics. Furthermore, we consider parametric scaling of PN coefficients of the conserved energy for the compact binary, resulting in the parametrized phasing formula for non-precessing spinning compact binaries in quasi-circular orbit. We also compute the projected accuracies with which the second and third generation ground-based gravitational wave detector networks as well as the planned space-based detector LISA will be able to measure the multipole deformation parameters and the binding energy parameters. Based on different source configurations, we find that a network of third-generation detectors would have comparable ability to that of LISA in constraining the conservative and dissipative dynamics of the compact binary systems. This parametrized multipolar waveform would be extremely useful not only in deriving the first upper limits on any deviations of the multipole and the binding energy coefficients from general relativity using the gravitational wave detections, but also for science case studies of next generation gravitational wave detectors.Comment: 16 pages, 8 figures, Mathematica readable supplemental material file for all the inputs to calculate the parametrized waveform is with the sourc

    Higher signal harmonics, LISA's angular resolution, and dark energy

    Get PDF
    It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.Comment: 15 pages, no figures. Final version to appear in Phys. Rev.

    Macroscopic limit cycle via pure noise-induced phase transition

    Full text link
    Bistability generated via a pure noise-induced phase transition is reexamined from the view of bifurcations in macroscopic cumulant dynamics. It allows an analytical study of the phase diagram in more general cases than previous methods. In addition using this approach we investigate patially-extended systems with two degrees of freedom per site. For this system, the analytic solution of the stationary Fokker-Planck equation is not available and a standard mean field approach cannot be used to find noise induced phase transitions. A new approach based on cumulant dynamics predicts a noise-induced phase transition through a Hopf bifurcation leading to a macroscopic limit cycle motion, which is confirmed by numerical simulation.Comment: 8 pages, 8 figure
    corecore