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We investigate the efficiency of power generation by thermochemical engines. For strong coupling

between the particle and heat flows and in the presence of a left-right symmetry in the system, we

demonstrate that the efficiency at maximum power displays universality up to quadratic order in the

deviation from equilibrium. A maser model is presented to illustrate our argument.
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The concept of Carnot efficiency is a cornerstone of
thermodynamics. It states that the efficiency of a cyclic

(‘‘Carnot’’) thermal engine that transforms an amountQðrÞ
of energy extracted from a heat reservoir at temperature Tr

into an amount of work W is at most � ¼ W =QðrÞ �
�c ¼ 1� Tl=Tr, where Tl is the temperature of a second,
colder reservoir. The theoretical implications of this result
are momentous, as they lie at the basis of the introduction
by Clausius of the entropy as a state function. The practical
implications are more limited, since the upper limit �c

(‘‘Carnot efficiency’’) is only reached for engines that
operate reversibly. As a result, when the efficiency is
maximal, the output power is zero. By optimizing the
Carnot cycle with respect to power rather than efficiency,
Curzon and Ahlborn found that the corresponding effi-

ciency is given by �CA ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi
Tl=Tr

p
[1]. They obtained

this result for a specific model, using in addition the so-
called endo-reversible approximation (i.e., neglecting the
dissipation in the auxiliary, work producing entity).
Subsequently, the validity of this result as an upper bound,
as well as its universal character, were the subjects of a
long-standing debate. In the regime of linear response,
more precisely to linear order in �c, it was proven that
the efficiency at maximum power is indeed limited by the
Curzon-Ahlborn efficiency, which in this regime is exactly
half of the Carnot efficiency, � � �CA ¼ �c=2þOð�2

cÞ
[2]. The upper limit is reached for a specific class of
models, namely, those for which the heat flux is strongly
coupled (i.e., directly proportional) to the work-generating
flux. Interestingly, such strong coupling is also a prereq-
uisite for open systems to achieve Carnot efficiency [3,4].
In the nonlinear regime, no general result is known.
Efficiencies at maximum power, not only below but also
above Curzon-Ahlborn efficiency, have been reported [5–
8]. However, it was also found, again in several strong
coupling steady-state models [8–10] as well as for an
overdamped Brownian particle in a time-dependent har-
monic potential [7], that the efficiency at maximum power
agrees with �CA up to quadratic order in �c, i.e., � ¼

�c=2þ �2
c=8þOð�3

cÞ, again raising the question of uni-
versality at least to this order. In this Letter we prove that
the coefficient 1=8 is indeed universal for strong coupling
models that possess a left-right symmetry. Such a univer-
sality is remarkable in view of the fact that most explicit
macroscopic relationships, for example, the symmetry of
Onsager coefficients, are limited to the regime of linear
response. The interest in strong coupling is further moti-
vated by the observation that it can naturally be achieved in
nanodevices [11–13]. To complement our theoretical dis-
cussion, we also present a detailed study of a thermal
nanomachine based on the operation of a maser [14]. It
can be solved analytically and illustrates all the above
mentioned features. Depending on the value of the
Einstein coefficients, the efficiency of the maser at maxi-
mum power may be above or below Curzon-Ahlborn.
However, when the Einstein coefficients are equal, the
predicted universality is observed, with the universal value
1=2 for the linear coefficient, and the quadratic coefficient
equal to 1=8.
In view of the interest of our analysis for small scale

systems, and in order to establish the connection with the
subsequent discussion of the maser model, we derive the
main results on the basis of a stochastic thermodynamic
analysis as formulated for a master equation description of
a driven open system [15,16]. As we will show in passing,
this formalism is fully consistent with macroscopic
thermodynamics.
The system under consideration is characterized by a set

of states i of energy �i and number of particles Ni. It
exchanges particles and energy with two reservoirs � ¼
l, r, with inverse temperatures �� and chemical potentials
��, respectively. The probability of finding the system in
state i at time t is denoted by piðtÞ. The state of the system
evolves in time according to a stochastic process which is
described by the master equation

_p iðtÞ ¼
X
j

WijpjðtÞ: (1)
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As a result of conservation of total probability, the stochas-
tic rate matrix obeys the usual condition

P
iWij ¼ 0.Wij is

the probability per unit time to make a transition to state i
from state j. We assume that these transition rates are
expressed as sums of independent contributions from the

two reservoirs,Wij ¼
P

�W
ð�Þ
ij (� ¼ l, r). To reproduce the

correct properties at equilibrium, it follows that each of the

separate rate matrices Wð�Þ
ij satisfies detailed balance with

respect to the grand canonical distribution at the prevailing
temperature and chemical potential,

Wð�Þ
ji

Wð�Þ
ij

¼ expf��½ð�i � �jÞ ���ðNi � NjÞ�g: (2)

The average energy and matter currents entering the sys-
tem from the reservoir � are given by

I ð�Þ
E ðtÞ ¼ X

i;j

Wð�Þ
ij pjðtÞð�i � �jÞ; (3)

I ð�Þ
M ðtÞ ¼ X

i;j

Wð�Þ
ij pjðtÞðNi � NjÞ: (4)

The rate of change of the total energy of the system and the
(chemical) work per unit time on the system read

_EðtÞ ¼ X
i

_piðtÞ�i ¼
X
�

I ð�Þ
E ðtÞ; _W ðtÞ ¼ X

�

��I
ð�Þ
M ðtÞ:

(5)

The corresponding total average heat flow follows from

energy conservation, _QðtÞ ¼ P
�
_Qð�ÞðtÞ ¼ _EðtÞ � _W ðtÞ.

In particular, the (average) heat flow from the reservoir �
into the system is given by

_Q ð�ÞðtÞ ¼ I ð�Þ
E ðtÞ ���I

ð�Þ
M ðtÞ: (6)

The entropy of the system is taken to be the usual system
entropy SðtÞ ¼ �P

mpmðtÞ lnpmðtÞ (Boltzmann’s constant
kB ¼ 1). Using the master equation (1), one easily verifies
that the rate of change of this entropy can be written in the
form of a balance equation, namely, _SðtÞ ¼ _SiðtÞ þ _SeðtÞ.
Here, _SiðtÞ is the non-negative total entropy production for
the physical processes represented by the master equation,

_S iðtÞ ¼
X
i;j;�

Wð�Þ
ij pjðtÞ ln

Wð�Þ
ij pjðtÞ

Wð�Þ
ji piðtÞ

� 0: (7)

Using Eq. (2), one verifies that the entropy flow into the
system is given by the familiar thermodynamic expression

in terms of the heat fluxes, _SeðtÞ ¼
P

�
_Qð�ÞðtÞ=T�.

We focus on the case of a nonequilibrium steady state.
From _S ¼ 0 we have that _Si ¼ � _Se. Also, current conser-

vation at steady state implies that
P

�I
ð�Þ
E ¼ P

�I
ð�Þ
M ¼ 0.

As a result, the entropy production can now be written in
the traditional bilinear force-flux form [17]

_S i ¼ F EI
ðrÞ
E þFMI

ðrÞ
M � 0; (8)

with the standard expressions for the thermodynamic
forces,

F E ¼ 1

Tl

� 1

Tr

; FM ¼
�
��l

Tl

�
�

�
��r

Tr

�
: (9)

We are interested in the operation of the device as a heat
engine that carries particles uphill in the chemical poten-
tial, driven by a heat current from the hot to the cold
reservoir. With no loss of generality, we henceforth assume
that Tr > Tl and �r < �l. As mentioned before, we focus
on the power generated by the device, which, due to current
conservation in the steady state, reads:

P ¼ � _W ¼ �ð�r ��lÞI ðrÞ
M : (10)

The resulting efficiency of producing chemical work from
the heat pumped out of the hot reservoir r is [see Eq. (6)]

� ¼ �W

QðrÞ ¼ � _W
_QðrÞ ¼ �r ��l

�r � I ðrÞ
E =I ðrÞ

M

: (11)

The above formalism can be further simplified for the case
of strong coupling between the energy and matter flux,
defined as

I ðrÞ
E ¼ "I ðrÞ

M � "I : (12)

This condition implies that energy is exclusively trans-
ported by particles of a given energy ". Such a selection
is quite natural in quantum nanodevices such as the maser
[14] (see also below), and in thermoelectrical nanodevices
[12], but it can also occur in the classical context, for
example, for Kramers’ escape, where the particles that
cross the barrier have precisely the minimum energy
needed to do so [10]. Using Eq. (12), one can now rewrite
the entropy production (8) in the simple form _Si ¼ FI .
Here I is the current introduced in Eq. (12) and the
associated thermodynamic force F can be expressed in
terms of dimensionless scaled energies xl and xr,

F ¼ xl � xr; xr ¼ "��r

Tr

; xl ¼ "��l

Tl

:

(13)

Hence the two flows and forces collapse into a single flux I
and a single corresponding thermodynamic force F , re-
spectively. Note that equilibrium, that is, zero entropy
production, is reached for F ¼ 0. This does not require
that the forcesF E andFM be zero separately. In fact in the
vicinity of F ¼ 0 the device can operate at Carnot effi-
ciency, see for example [3,4,12]. Using Eq. (12), the power
(10) becomes

P ¼ � _W ¼ ðTrxr � TlxlÞI ¼ �TrðF � �cxlÞI ;
(14)
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and the thermodynamic efficiency (11) reads

� ¼ �l ��r

"��r

¼ 1� ð1� �cÞ xlxr : (15)

The properties of the system are contained in the depen-
dence of the flux I on the variables xl and xr, I ¼
Iðxr; xlÞ. Its explicit expression is obtained by inserting
the steady-state solution of the master equation (1) into the
expression (4) for the mass flux.

To identify the regime of maximum power, we proceed
in two steps. The extremum of power with respect to F is
determined by the condition

T�1
r

@ _W
@F

¼ I þ ðF � xl�cÞ@F I ¼ 0: (16)

Since we are interested in the behavior around equilibrium,
including the first nonlinear correction term to the linear
regime, we expand the current Iðxr; xlÞ ¼ Iðxl �F ; xlÞ to
quadratic order in F , I ¼ LF þMF 2 þOðF 3Þ. The
Onsager coefficients are given by L ¼ �I 0

1ðxl; xlÞ and
M ¼ I 00

11ðxl; xlÞ=2. The primes denote the number of de-
rivatives and the subindices indicate whether these deriva-
tives are taken with respect to the first or second variable.
Furthermore, since F has to become zero when �c goes to
zero, we can write, again to quadratic order, that F ¼
b1�c þ c1�

2
c þOð�3

cÞ. Insertion in the extremum condi-
tion (16) allows us to identify the coefficients b1 ¼ xl=2
and c1 ¼ Mx2l =ð8LÞ. The resulting expression for the effi-

ciency (15) reads

� ¼ �c

2
þ

�
1

4
�Mxl

8L

�
�2
c þOð�3

cÞ: (17)

Next, we maximize power with respect to xl,

T�1
r

@ _W
@xl

¼ ��cI þ ðF � xl�cÞ@xlI ¼ 0: (18)

It suffices to find the result to lowest order in �c. Inserting
the expansions I ¼ LF þOð�2

cÞ and F ¼ �cxl=2þ
Oð�2

cÞ, one finds that xl ¼ �2L=@xlL. Combined with

Eq. (17), we finally arrive at the following result for the
efficiency at maximum power, valid up to quadratic order
in �c:

� ¼ �c

2
þ

�
1þ M

@xlL

�
�2
c

4
þOð�3

cÞ: (19)

We conclude that, while we recover the universal value of
the coefficient 1=2 in the linear term, the coefficient of the
quadratic term is in general model dependent. However, as
we now proceed to show, the appearance of the coefficient
1=8 in previously studied models [8,10] derives from the
fact that these models possess a left-right symmetry. More
precisely, such a symmetry implies that the switching of
temperatures �� and chemical potentials �� leads to an
inversion of the flux,

I ðxr; xlÞ ¼ �Iðxl; xrÞ: (20)

By deriving both sides with respect to xr and xl and then
setting xr ¼ xl, one finds that I 00

12ðxl; xlÞ ¼ 0. Together
with @xlL ¼ �I 00

11ðxl; xlÞ � I 00
12ðxl; xlÞ, we conclude that

the condition 2M ¼ �@xlL is verified and universality of

the coefficient 1=8 is established under the symmetry
specified in Eq. (20).
To illustrate these findings, we turn to the analysis of the

maser model introduced in [14], see Fig. 1. The system
possesses three energy levels �i, i ¼ 1, 2, 3. It exchanges
photons with three equilibrium black bodies R, L, and S
(temperatures Tr, Tl, and Ts) with corresponding specific
frequencies h�r ¼ �3 � �1, h�l ¼ �3 � �2, and h�s ¼
�2 � �1. The reservoirs R, L, and S control the transitions
1–3, 2–3 and 1–2, respectively. The stochastic dynamics of
these transitions are described by the master equation (1),
with rates corresponding to the processes of absorption,
spontaneous emission, and stimulated emission of the pho-

tons. They are given by WðrÞ
31 ¼ �rnðxrÞ (absorption of a

photon from R) and WðrÞ
13 ¼ �r½1þ nðxrÞ� (spontaneous

and stimulated emission of a photon into R), and identical
expressions for transitions 2–3 and 1–2, with the indices r
replaced by l and s, respectively. Here, we introduced the
Bose-Einstein distribution nðxÞ ¼ ½expðxÞ � 1��1, with the
scaled energies xr ¼ h�r=Tr, xl ¼ h�l=Tl and xs ¼
h�s=Ts, and the reduced Einstein coefficients ��.
To transform the system into a thermal engine, we con-

sider the high temperature limit Ts ! 1 (xs ! 0). The
reservoir S effectively becomes a repository of work, since
heat stored in a reservoir at infinite temperature can be
recuperated at 100% (the corresponding Carnot efficiency
being equal to 1). We next note the cyclic nature of the
transitions: Starting from state 1, in order to deposit the
amount �w ¼ h�s as work into the S reservoir (transition

2 ! 1), the system first needs to absorb a photon qðrÞ ¼
h�r from the hot reservoir (transition 1 ! 3) and next

deposit�qðlÞ ¼ h�l into the cold reservoir (transition 3 !
2). This (with the reverse process) is the only available
cycle. The corresponding efficiency of the cycle reads:

� ¼ �w

qðrÞ
¼ �2 � �1

�3 � �1
¼ 1� ð1� �cÞ xlxr : (21)

At steady state, the system will, on average, run through I
such cycles per unit time, with corresponding heat flows
_QðrÞ ¼ qrI and _QðlÞ ¼ qlI . The power of the device is

1

2

3

LT

RT

ST

FIG. 1. Illustration of the maser model.
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given by

P ¼ �wI ¼ _QðrÞ þ _QðlÞ ¼ ðTrxr � TlxlÞI : (22)

We thus recover the previously derived results of the strong
coupling regime, cf. Eqs. (14) and (15). To complete the
analysis, we need to evaluate the steady-state current I .
This is a matter of algebra, involving the steady-state
solution of the master equation using the transition rates
given above. One finds:

I ¼ ðexl �exrÞ�l�r

ð1þ2exlÞðexr �1Þ�lþð1þ2exrÞðexl �1Þ�r

: (23)

Concerning efficiency of the device at maximum power,
we can now invoke the general conclusions mentioned
earlier. The symmetry criterion (20) for the current is
only satisfied when �l ¼ �r. Under this condition, the
efficiency at maximum power displays the universal coef-
ficient 1=8 for the quadratic term, in addition to the uni-
versal linear coefficient 1=2. This observation is confirmed
by an explicit calculation for the model under considera-
tion. We find:

�¼�c

2
þ
�
1� 3ð�l��rÞ

ð�lþ�rÞð3cosh�þsinh�Þ
�
�2
c

8
þOð�3

cÞ;
where � ¼ 1:77676, the solution of the transcendental
equation 2þ �þ 2e� þ 2ð�� 2Þe2� ¼ 0, is also the

asymptotic value of xl and xr when �c ! 0. To complete
the picture, we have reproduced, in Fig. 2(a), the efficiency
at maximum power as a function of �, with � 2 ½0; 1�, for
the cases �l=�r ¼ 0, 1 and 1 [18]. All three curves are
remarkably close to the Curzon-Ahlborn efficiency, even
though the efficiency is slightly larger in the first two cases
and slightly less in the last case. In view of their techno-
logical interest, we also include in Fig. 2(b) the corre-
sponding maximum power and the operational conditions
of the scaled energies xl and xr.
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FIG. 2 (color online). (a) Efficiency at maximum power com-
pared with Carnot efficiency (straight dashed line) and Curzon-
Ahlborn efficiency (dotted line). (b) Scaled energies xl and xr
and maximum power P (note that xl and xr depend only on the
ratio �l=�r but P does not).
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