183 research outputs found

    Modeling of reaction-diffusion transport into a core-shell geometry

    Get PDF
    Fickian diffusion into a core-shell geometry is modeled. The interior core mimics pancreatic Langerhan islets and the exterior shell acts as inert protection. The consumption of oxygen diffusing into the cells is approximated using Michaelis-Menten kinetics. The problem is transformed to dimensionless units and solved numerically. Two regimes are identified, one that is diffusion limited and the other consumption limited. A regression is fit that describes the concentration at the center of the cells as a function of the relevant physical parameters. It is determined that, in a cell culture environment, the cells will remain viable as long as the islet has a radius of around 142μm142 \mu m or less and the encapsulating shell has a radius of less than approximately 283μm283 \mu m. When the islet is on the order of 100μm100 \mu m it is possible for the cells to remain viable in environments with as little as 4.6×102mol/m34.6\times10^{-2} mol/m^{-3} O2O_2. These results indicate such an encapsulation scheme may be used to prepare artificial pancreas to treat diabetes

    Relationship between operon preference and functional properties of persistent genes in bacterial genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes in bacteria may be organised into operons, leading to strict co-expression of the genes that participate in the same operon. However, comparisons between different bacterial genomes have shown that much of the operon structure is dynamic on an evolutionary time scale. This indicates that there are opposing effects influencing the tendency for operon formation, and these effects may be reflected in properties like evolutionary rate, complex formation, metabolic pathways and gene fusion.</p> <p>Results</p> <p>We have used multi-species protein-protein comparisons to generate a high-quality set of genes that are persistent in bacterial genomes (i.e. they have close to universal distribution). We have analysed these genes with respect to operon participation and important functional properties, including evolutionary rate and protein-protein interactions.</p> <p>Conclusions</p> <p>Genes for ribosomal proteins show a very slow rate of evolution. This is consistent with a strong tendency for the genes to participate in operons and for their proteins to be involved in essential and well defined complexes. Persistent genes for non-ribosomal proteins can be separated into two classes according to tendency to participate in operons. Those with a strong tendency for operon participation make proteins with fewer interaction partners that seem to participate in relatively static complexes and possibly linear pathways. Genes with a weak tendency for operon participation tend to produce proteins with more interaction partners, but possibly in more dynamic complexes and convergent pathways. Genes that are not regulated through operons are therefore more evolutionary constrained than the corresponding operon-associated genes and will on average evolve more slowly.</p

    Gene duplications in prokaryotes can be associated with environmental adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes.</p> <p>Results</p> <p>Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis.</p> <p>Conclusions</p> <p>Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism. Paralogs and singletons dominate different categories of functional classification, where paralogs in particular seem to be associated with processes involving interaction with the environment.</p

    Perioperative or adjuvant mFOLFIRINOX for resectable pancreatic cancer (PREOPANC-3):study protocol for a multicenter randomized controlled trial

    Get PDF
    BACKGROUND: Surgical resection followed by adjuvant mFOLFIRINOX (5-fluorouracil with leucovorin, irinotecan, and oxaliplatin) is currently the standard of care for patients with resectable pancreatic cancer. The main concern regarding adjuvant chemotherapy is that only half of patients actually receive adjuvant treatment. Neoadjuvant chemotherapy, on the other hand, guarantees early systemic treatment and may increase chemotherapy use and thereby improve overall survival. Furthermore, it may prevent futile surgery in patients with rapidly progressive disease. However, some argue that neoadjuvant therapy delays surgery, which could lead to progression towards unresectable disease and thus offset the potential benefits. Comparison of perioperative (i.e., neoadjuvant and adjuvant) with (only) adjuvant administration of mFOLFIRINOX in a randomized controlled trial (RCT) is needed to determine the optimal approach. METHODS: This multicenter, phase 3, RCT will include 378 patients with resectable pancreatic ductal adenocarcinoma with a WHO performance status of 0 or 1. Patients are recruited from 20 Dutch centers and three centers in Norway and Sweden. Resectable pancreatic cancer is defined as no arterial contact and ≤ 90 degrees venous contact. Patients in the intervention arm are scheduled for 8 cycles of neoadjuvant mFOLFIRINOX followed by surgery and 4 cycles of adjuvant mFOLFIRINOX (2-week cycle of oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, irinotecan 150 mg/m2 at day 1, followed by 46 h continuous infusion of 5-fluorouracil 2400 g/m2). Patients in the comparator arm start with surgery followed by 12 cycles of adjuvant mFOLFIRINOX. The primary outcome is overall survival by intention-to-treat. Secondary outcomes include progression-free survival, resection rate, quality of life, adverse events, and surgical complications. To detect a hazard ratio of 0.70 with 80% power, 252 events are needed. The number of events is expected to be reached after the inclusion of 378 patients in 36 months, with analysis planned 18 months after the last patient has been randomized. DISCUSSION: The multicenter PREOPANC-3 trial compares perioperative mFOLFIRINOX with adjuvant mFOLFIRINOX in patients with resectable pancreatic cancer. TRIAL REGISTRATION: Clinical Trials: NCT04927780. Registered June 16, 2021.</p

    Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    Get PDF
    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051

    Minimally invasive robot-assisted and laparoscopic distal pancreatectomy in a pan-European registry a retrospective cohort study

    Get PDF
    BACKGROUND: International guidelines recommend monitoring the use and outcome of minimally invasive pancreatic surgery (MIPS). However, data from prospective international audits on minimally invasive distal pancreatectomy (MIDP) are lacking. This study examined the use and outcome of robot-assisted (RDP) and laparoscopic (LDP) distal pancreatectomy in the E-MIPS registry. PATIENTS AND METHODS: Post-hoc analysis in a prospective audit on MIPS, including consecutive patients undergoing MIDP in 83 centers from 19 European countries (01-01-2019/31-12-2021). Primary outcomes included intraoperative events (grade 1: excessive blood loss, grade 2: conversion/change in operation, grade 3: intraoperative death), major morbidity, and in-hospital/30-day mortality. Multivariable logistic regression analyses identified high-risk groups for intraoperative events. RDP and LDP were compared in the total cohort and high-risk groups. RESULTS: Overall, 1672 patients undergoing MIDP were included; 606 (36.2%) RDP and 1066 (63.8%) LDP. The annual use of RDP increased from 30.5% to 42.6% ( P &lt;0.001). RDP was associated with fewer grade 2 intraoperative events compared with LDP (9.6% vs. 16.8%, P &lt;0.001), with longer operating time (238 vs. 201 min, P &lt;0.001). No significant differences were observed between RDP and LDP regarding major morbidity (23.4% vs. 25.9%, P =0.264) and in-hospital/30-day mortality (0.3% vs. 0.8%, P =0.344). Three high-risk groups were identified; BMI greater than 25 kg/m 2 , previous abdominal surgery, and vascular involvement. In each group, RDP was associated with fewer conversions and longer operative times. CONCLUSION: This European registry-based study demonstrated favorable outcomes for MIDP, with mortality rates below 1%. LDP remains the predominant approach, whereas the use of RDP is increasing. RDP was associated with fewer conversions and longer operative time, including in high-risk subgroups. Future randomized trials should confirm these findings and assess cost differences.</p
    corecore