158 research outputs found

    Mitigating Branch-Shadowing Attacks on Intel SGX using Control Flow Randomization

    Full text link
    Intel Software Guard Extensions (SGX) is a promising hardware-based technology for protecting sensitive computations from potentially compromised system software. However, recent research has shown that SGX is vulnerable to branch-shadowing -- a side channel attack that leaks the fine-grained (branch granularity) control flow of an enclave (SGX protected code), potentially revealing sensitive data to the attacker. The previously-proposed defense mechanism, called Zigzagger, attempted to hide the control flow, but has been shown to be ineffective if the attacker can single-step through the enclave using the recent SGX-Step framework. Taking into account these stronger attacker capabilities, we propose a new defense against branch-shadowing, based on control flow randomization. Our scheme is inspired by Zigzagger, but provides quantifiable security guarantees with respect to a tunable security parameter. Specifically, we eliminate conditional branches and hide the targets of unconditional branches using a combination of compile-time modifications and run-time code randomization. We evaluated the performance of our approach by measuring the run-time overhead of ten benchmark programs of SGX-Nbench in SGX environment

    An Oort cloud origin for the high-inclination, high-perihelion Centaurs

    Full text link
    We analyse the origin of three Centaurs with perihelia in the range 15 AU to 30 AU, inclinations above 70 deg and semi-major axes shorter than 100 AU. Based on long-term numerical simulations we conclude that these objects most likely originate from the Oort cloud rather than the Kuiper Belt or Scattered Disc. We estimate that there are currently between 1 and 200 of these high-inclination, high-perihelion Centaurs with absolute magnitude H<8.Comment: Accepted for publication in MNRA

    Trapping Low-mass Planets at the Inner Edge of the Protostellar Disk

    Get PDF
    The formation of multiple close-in low-mass exoplanets is still a mystery. The challenge is to build a system wherein the outermost planet is beyond 0.2 au from the star. Here, we investigate how the prescription for type I planet migration affects the ability to trap multiple planets in a resonant chain near the inner edge of the protostellar disk. A sharp edge modeled as a hyperbolic tangent function coupled with supersonic corrections to the classical type I migration torques results in the innermost planets being pushed inside the cavity through resonant interaction with farther planets because migration is starward at slightly supersonic eccentricities. Planets below a few Earth masses are generally trapped in a resonant chain with the outermost planet near the disk edge, but long-Term stability is not guaranteed. For more massive planets the migration is so fast that the eccentricity of the innermost resonant pair is excited to highly supersonic levels due to decreased damping on the innermost planet as it is pushed inside the cavity; collisions frequently occur, and the system consists of one or two intermediate-mass planets residing closer to the star than the disk's inner edge. We found a neat pileup of resonant planets outside the disk edge only if the corotation torque does not rapidly diminish at high eccentricity. We call for detailed studies on planet migration near the disk's inner edge, which is still uncertain, and for an improved understanding of eccentricity damping and disk torques in the supersonic regime.</p

    The cool and distant formation of Mars

    Get PDF
    With approximately one ninth of Earth's mass, Mars is widely considered to be a stranded planetary embryo that never became a fully-grown planet. A currently popular planet formation theory predicts that Mars formed near Earth and Venus and was subsequently scattered outwards to its present location. In such a scenario, the compositions of the three planets are expected to be similar to each other. However, bulk elemental and isotopic data for martian meteorites demonstrate that key aspects of Mars' composition are markedly different from that of Earth. This suggests that Mars formed outside of the terrestrial feeding zone during primary accretion. It is therefore probable that Mars always remained significantly farther from the Sun than Earth; its growth was stunted early and its mass remained relatively low. Here we identify a potential dynamical pathway that forms Mars in the asteroid belt and keeps it outside of Earth's accretion zone while at the same time accounting for strict age and compositional constraints, as well as mass differences. Our uncommon pathway (approximately 2% probability) is based on the Grand Tack scenario of terrestrial planet formation, in which the radial migration by Jupiter gravitationally sculpts the planetesimal disc at Mars' current location. We conclude that Mars' formation requires a specific dynamical pathway, while this is less valid for Earth and Venus. We further predict that} Mars' volatile budget is most likely different from Earth's and that Venus formed close enough to our planet that it is expected to have a nearly identical composition from common building blocks.Comment: Accepted in Earth and Planetary Science Letter

    Analysis of terrestrial planet formation by the grand tack model:system architecture and tack location

    Get PDF
    The Grand Tack model of terrestrial planet formation has emerged in recent years as the premier scenario used to account for several observed features of the inner solar system. It relies on early migration of the giant planets to gravitationally sculpt and mix the planetesimal disc down to ~1 AU, after which the terrestrial planets accrete from material left in a narrow circum-solar annulus. Here we have investigated how the model fares under a range of initial conditions and migration course-change (`tack') locations. We have run a large number of N-body simulations with a tack location of 1.5 AU and 2 AU and tested initial conditions using equal mass planetary embryos and a semi-analytical approach to oligarchic growth. We make use of a recent model of the protosolar disc that takes account of viscous heating, include the full effect of type 1 migration, and employ a realistic mass-radius relation for the growing terrestrial planets. Results show that the canonical tack location of Jupiter at 1.5 AU is inconsistent with the most massive planet residing at 1 AU at greater than 95% confidence. This favours a tack farther out at 2 AU for the disc model and parameters employed. Of the different initial conditions, we find that the oligarchic case is capable of statistically reproducing the orbital architecture and mass distribution of the terrestrial planets, while the equal mass embryo case is not.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore