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ABSTRACT

The Grand Tack model of terrestrial planet formation has emerged in recent years as the premier scenario used to
account for several observed features of the inner solar system. It relies on the early migration of the giant planets
to gravitationally sculpt and mix the planetesimal disk down to ∼1 au, after which the terrestrial planets accrete
from material remaining in a narrow circumsolar annulus. Here, we investigate how the model fares under a range
of initial conditions and migration course-change (“tack”) locations. We run a large number of N-body simulations
with tack locations of 1.5 and 2 au and test initial conditions using equal-mass planetary embryos and a semi-
analytical approach to oligarchic growth. We make use of a recent model of the protosolar disk that takes into
account viscous heating, includes the full effect of type 1 migration, and employs a realistic mass–radius relation
for the growing terrestrial planets. Our results show that the canonical tack location of Jupiter at 1.5 au is
inconsistent with the most massive planet residing at 1 au at greater than 95% confidence. This favors a tack farther
out at 2 au for the disk model and parameters employed. Of the different initial conditions, we find that the
oligarchic case is capable of statistically reproducing the orbital architecture and mass distribution of the terrestrial
planets, while the equal-mass embryo case is not.

Key words: planets and satellites: formation – planets and satellites: terrestrial planets

1. INTRODUCTION

A successful physical model for the formation of the
terrestrial planets is a long-standing problem (Tsiganis 2015).
The first physically plausible idea came from Safronov (1969),
who suggested that the earliest stage of the accumulation of
dust into larger bodies was caused by gravitational instability in
a thin dust layer. Safronov (1969) showed that the relative
velocities between bodies are of the order of their escape
velocity, and so the largest body’s gravitational cross section is
limited by the geometrical cross section, limiting growth. These
findings were later used by Wetherill (1980), who showed that
the terrestrial planets coagulated from planetesimals, and that
the formation of the these planets was linked to the evolution of
the asteroid belt. Wetherill & Stewart (1989) elaborated that in
a disk of planetesimals, some would undergo runaway growth
and form a sequence of planetary embryos. These embryos
would then further collide to form the terrestrial planets.

These ideas were first rigorously tested by Kokubo & Ida
(1996), who performed numerical simulations of a self-
gravitating disk of planetesimals. They discovered that some
objects in the disk underwent runaway growth, as was
predicted, which resulted in a mixed population of protoplanets
and planetesimals (Kokubo & Ida 1998). The protoplanets
underwent so-called oligarchic growth: all would be roughly
equally spaced and of similar mass as each vied for supremacy
in accreting the last remaining planetesimals. The protoplanets
(also dubbed “planetary embryos”) would subsequently collide
to form the terrestrial planets (Chambers 2001).

Early simulations of terrestrial planet formation yielded
estimates for a growth timescale of several tens of millions of
years and overall results which showed that the final terrestrial

system would be assembled by 100Myr (Chambers 2001).
Most of these early simulated systems, however, were found to
suffer from excess eccentricity and inclination for the final
planets, but the inclusion of a large number of planetesimals to
exert dynamical friction alleviated this concern (O’Brien et al.
2006). A further chronic and fundamental shortcoming of
earlier simulations was that the output systematically yielded a
far too massive Mars analog. This predicament led Raymond
et al. (2009) to investigate how the mass of Mars might depend
on the orbital configuration of the giant planets. It was found
that only the current spacing of the gas giants led to the model
being capable of producing a Mars analog much less massive
than Earth, but under the special condition that the eccentri-
cities of the gas giants were higher than their current values. As
such, Raymond et al. (2009) highlighted the unrealistic nature
of the initial conditions required to explain Mars’ low mass,
and left the problem as a lingering problem to be solved later.
A potential solution presented itself in the work of Hansen

(2009), who studied terrestrial planet formation with planetary
embryos situated in a narrow annulus between 0.7 and 1 au
from the Sun. These initial conditions nicely reproduced the
mass-semimajor axis relationship we have today, with two
relatively large terrestrial-type planets book-ended by two
much less massive planets. The main drawback of that study
was that no mechanism was presented to gravitationally
truncate the outer edge of the solid disk near 1 au. The same
could be said for the inner edge, so that no mechanism existed
to create such a high-density, narrow annulus with which to
explain the terrestrial worlds.
This quandary led Walsh et al. (2011) to propose the so-

called Grand Tack scenario, wherein the early, gas-driven
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coupled migration of Jupiter and Saturn sculpts the planetesi-
mal disk and truncates it near 1 au. The Grand Tack at least
partially explains the formation of a high-density region in the
inner disk, although it cannot explain the existence of an inner
cavity inside roughly 0.7 au. The inclusion of this scenario
leads to a broad outline of how the early solar system evolved.
First, Jupiter is assumed to form before Saturn, clearing the gas
in an annulus with a width comparable to its Hill radius, and
undergoing inward Type 2 migration (Lin & Papaloizou 1986).
The inward migration of Jupiter shepherds material toward the
inner portion of the disk while also scattering other material
outward, creating an enhanced density region for terrestrial
planet formation and mixing planetesimals from the innermost
and outer portions of the protoplanetary disk. Once Saturn
grows to about half of its current mass (Masset & Casoli 2009),
it is assumed to partially clear the disk in its vicinity, migrate
rapidly at first to catch up with Jupiter, and subsequently
become trapped in a mean-motion resonance near Jupiter,
presumably the 2:3 resonance (Masset & Snellgrove 2001;
Pierens & Raymond 2011) but it may also have been the 2:1
(Pierens et al. 2014). In this process, these two giant planets
clear the disk together. The torque from the interaction with the
disk is stronger for a shorter separation between the planet and
the disk edge. Since Jupiter and Saturn are interacting and
Jupiter is more massive, it is reasonable to think that Saturn is
pushed outward by Jupiter’s perturbation, and the separation
from the disk edge is smaller for Saturn than for Jupiter. Thus,
the torque on Saturn can be larger despite the planet’s lower
mass. The interaction with Jupiter prevents Saturn from
creating a cleared annulus in the disk and allows gas from
the outer disk to flow past Saturn and into the inner disk. If the
gap-crossing disk gas flow is large enough, then the Jupiter-
Saturn pair can migrate outward (Masset & Snellgrove 2001;
Pierens & Nelson 2008). Consequently, the planets reverse
their migration: they tack as a sail boat would change its
direction by steering into and through the wind. Once the giant
planets have completed this early migration phase, have left the
inner solar system, and settled in the vicinity of their present
positions, terrestrial planet formation could proceed as before,
but only (as advocated by Hansen 2009) from material in a
narrow circumsolar annulus. In this manner, Walsh et al.
(2011) successfully reproduced the mass-semimajor axis
distribution of the inner planets if the reversal of Jupiter
occurred at 1.5 au because they truncated the inner edge of their
planetesimal disk at 0.5 au. A successful feature of their model
is that it also accounts for the apparent compositional
differences across the asteroid belt (DeMeo & Carry 2014).

It is worth noting, however, that this stepwise reconstruction
of the early evolution of the planetary system has some pitfalls
of varying severity. For example, the particular configuration
and outward migration of the giant planets favored by the
Grand Tack is only supported for a narrow set of initial
conditions (D’Angelo & Marzari 2012) and is not universal
(Zhang & Zhou 2010). There may also be other pathways to
produce such a high-density region through a deficit of material
near Mars (Izidoro et al. 2014), although this idea was recently
undermined in a follow-up study (Izidoro et al. 2015). Finally,
up to this point, the Grand Tack fails to reproduce the current
mass and location of Mercury, most likely because dynamical
models always truncate the disk near 0.5 au or beyond. Clearly,
further study is needed of both the gas-driven evolution of the
giant planets and the subsequent formation and evolution of the

terrestrial planets in order to explain what we see in our own
solar system.
With this in mind, we sought to scrutinize the Grand Tack

model and its consequences over most of the age of the solar
system by running a large number of Grand Tack simulations
with a range of initial conditions and varying tack locations.
Our work also includes several dynamical effects that have
hitherto been ignored. We report on the various methods that
we employ to quantify whether or not Grand Tack successfully
reproduces the observed dynamical features of the inner solar
system and whether one set of initial conditions and tack
locations is more favorable than another.
This report is organized as follows. In Section2, we

introduce several additions to the original Grand Tack
simulations of Walsh et al. (2011) and justify our choice of
disk model and the inclusion of type 1 migration. Section 3
describes our initial conditions, while Section 4 describes our
numerical methods. Section 5 explains our criteria for a set of
simulations to successfully reproduce the currently observed
dynamical properties of the inner solar system. This is followed
by Sections 6 and 7 where we describe the results of our
numerical simulations. Section 8 is reserved for a discussion,
and we draw our conclusions in Section 9.

2. DEVIATIONS FROM THE ORIGINAL GRAND TACK
MODEL

In addition to the simple reproduction of the Grand Tack
scenario, for this study we also chose to employ a substantially
different model for the protoplanetary disk than that used by
Walsh et al. (2011). An explanation for this choice is provided
below. We have also included the effect of type 1 embryo
migration.

2.1. Protoplanetary Disk

Walsh et al. (2011) employed the protoplanetary disk model
of Morbidelli & Crida (2007), which in turn was based on the
work of Guillot & Hueso (2006). The surface density of their
disk profile is of the form S = S -r r Rexp0

2 2( ) ( ), where
~R 200 au is a scaling constant. This Gaussian profile of the

surface density is markedly different from the often employed
power-law slopes found elsewhere in the literature, e.g.,
Hartmann et al. (1998). The scaling constant at 1 au is
S = 1000 gcm−2, which is much lower than the usual value
of 1700–2400gcm−2 (Hayashi 1981). Since the disk model of
Morbidelli & Crida (2007) is not widely used and relies on a
constant viscosity, ν, rather than a constant α viscosity, we
decided to make use of the disk model of Bitsch et al. (2015),
which is based on the study by Hartmann et al. (1998). Bitsch
et al. (2015) give fitting formulae to compute the disk’s surface
density, temperature, and scale height as a function of both
heliocentric distance and time. Initially, the disk’s gas surface
density at 1 au is 2272gcm−2 and the temperature is 576K in
the midplane, and so the scale height at 1 au is about 0.057 au
and the metallicity is equal to the solar value. This is higher
than most traditional models have assumed; the higher
temperature is caused by viscous heating. These fitting
formulae are valid, however, as long as any embedded planet
is not massive enough to significantly alter the disk structure,
such as by opening an annulus, and as long as the disk remains
mostly unperturbed. This latter requirement may not be entirely
true because of the proximity of Jupiter, whose presence
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imposes a change in the disk’s surface density and temperature.
For a radiative disk, this change in the temperature profile will
result in a change in the disk surface density, but for a viscous
disk, which is the region we work in, this effect is less severe.
Besides, a much lower disk temperature, caused by the
influence of Jupiter, would mean that the ice line is close to
1 au very early on, which is inconsistent with solar system
formation (Matsumura et al. 2016). Here, we adopt the disk of
Bitsch et al. (2015), set theα viscosity equal to 0.005, use a
solar metallicity, and adopt a molecular weight of the gas of 2.3
amu (Bitsch et al. 2015). The gas surface density scales as
S µ a-r r( ) and the temperature profile is µ b-T r r( ) , where
a = 1 2 and b = 6 7. These power-law relations are accurate
out to ∼5 au, which is the region we are interested in, and so we
adopted these profiles throughout the disk. In Figure 1, we plot
the evolution of the surface density (top) and the temperature
bottom as a function of time and distance to the Sun. There is a
very rapid decay for the first 1 Myr and a slower decay after
that. After 5 Myr, we photo-evaporate the disk away over the
next 100 kyr.

2.2. Embryo Migration

Although Walsh et al. (2011) decided not to include the
effect of type 1 migration (Tanaka et al. 2002) on the planetary
embryos, we decided to take it into account to determine
whether (or not) it drastically affects the outcome of the
simulations. For the migration prescription, we follow
Cresswell & Nelson (2008), which is partially based on the
work of Tanaka et al. (2002). We chose not to employ the non-
isothermal approach of Paardekooper et al. (2011) because
generally none of the terrestrial planets are massive enough to
begin outward migration, except during the very late stages
when the disk surface density is low. Thus, for simplicity, we
adhere to the isothermal case. The specific decelerations
experienced by the planetary embryos, due to the disk, in

eccentricity, inclination, and semimajor axis are given by

= -a
v r

r
r t

2 , 1e
e

2

( · ) ( )

= -a k
v

t
, 2i

z

i
( )

= -a
v
t

, 3m
m

( )

where r and v are the position and velocity vectors of the
embryo, k is the unit vector in the z-direction, vz is the z-
component of the velocity, and te, ti, and tm are the timescales
to damp the eccentricity, inclination, and semimajor axis. The
latter quantities depend in a complicated manner on the
semimajor axis, eccentricity, inclination, surface density, and
temperature of the gas, and the mass of the embryo. We refer
the interested reader to Cresswell & Nelson (2008) and Tanaka
et al. (2002) for details and for the conversion to the cartesian
frame. All of the above timescales are a function of the wave
time, given by (Tanaka & Ward 2004)
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where we used =H r c vK, WK is the orbital frequency,
g m=c k T m2

B p is the sound speed, vK is the orbital speed, H
is the scale height, γ is the ratio of specific heats (taken as 7/5),
kB is the Boltzmann constant, mp is the mass of the proton, and
μ is the molecular weight of the gas, assumed to be 2.3 amu.
The value of twav depends sensitively on the slopes of the
surface density and temperature profiles, but the product

µ b a- +m t aemb wav
3 2 2 is much less sensitive and is what

determines the migration rate of the embryos. We generally
have ~m t aemb wav

2 7 to a2 for our disk profile and the
minimum disk profile of Hayashi (1981; which has a = 3 2
and b = 1 2).
Walsh et al. (2011) included the first two deceleration

contributions in Equations (1)–(3) because these are tidal
effects cause by the disk that damp the eccentricity and
inclination, but they omitted the third (Equation (3)), which is
in part responsible for the inward migration of the planetary
embryos. For the disk that we have chosen, near 1 au we
compute ~ SÅ

-t M m2 0.1 2000 g cmm emb
2( )( ) Myr, so that

any inward migration the embryos experience will likely be
severely restricted because the migration timescale is longer
than the disk lifetime and increases as the disk surface density
decreases. However, ~t 21e kyr for a Mars-sized body near
1 au, and so the damping effect is a lot stronger than the
migration. For the disk employed by Walsh et al. (2011), the
migration and damping timescales are both at least an order of
magnitude longer, so that their effects of type 1 migration are
very weak.
To compare our migration times with earlier results, we note

that for an Earth-sized body at 1 au, our nominal disk
parameters yield ~t 1700 yearswav and ~t 180m kyr, which
are much longer than the values of Tanaka et al. (2002) and
Tanaka & Ward (2004) because our disk is initially hotter. The
wave time scales as H r 4( ) , so that a factor of 1.5 in H/r will

Figure 1. Contour plots of S -log 1 g cm 2( ) (top) and Tlog 1 K( ) (bottom) as
a function of distance to the Sun (horizontal axis) and age in Myr
(vertical axis).

3

The Astrophysical Journal, 821:75 (18pp), 2016 April 20 Brasser et al.



result in a factor of 5 in the migration timescale; meanwhile,
µt H rm

2( ) , and so the effect of the disk temperature on it is
weaker. As the disk evolves, the temperature decreases,
speeding up type 1 migration, but the surface density also
decreases, slowing it down. In general, the effect of type 1
migration weakens with time.

Thus, the effect of type 1 migration should be relatively
weak in our disk model compared to the traditional results of
Tanaka et al. (2002) and Tanaka & Ward (2004). Apart from
the migrating force, the eccentricity and inclination damping
forces from the disk will also cause some inward migration of
the embryos due to angular momentum loss, and we expect
them to migrate inward on the order of 0.1 au over the lifetime
of the disk. In Figure 2, we plot a contour map of the
normalized torque on the planetary embryos as a function of
their distance to the Sun and their mass at the zero-time age of
the disk. The normalized torque is G = G Gn tot 0, where
G = Sm M r H v r0 emb

2 2 2( ) ( ) ( ) . The migration rate is then
= - Gr r L2 tot˙ , where L is the orbital angular momentum

(Tanaka et al. 2002). In all of the disk models, the definition of
the torque is always inward.

3. INITIAL CONDITIONS

For this project, we have run a large sample of numerical
simulations of the Grand Tack scenario. These simulations are
categorized into four large sets, with further subdivisions
therein.

All of our simulations start with a high number of small
planetesimals, planetary embryos, and with the gas giants
Jupiter and Saturn. We do not include Uranus and Neptune in
any of the simulations because they do not have any immediate
effects on the formation of the terrestrial planets (Walsh et al.
2011). In all of our simulations, we chose to not take into
account the effect of Saturn’s mass growth. According to
Walsh et al. (2011) and Jacobson & Morbidelli (2014), other
effects, such as the radial evolution of Saturn and the gas giant
migration timescale, did not substantially change the final
terrestrial planet systems. Given the high number of free
parameters, we decided to follow Walsh et al. (2011) with cases
where Jupiter is assumed to have its current mass and is

initially placed on a near-circular orbit at 3.5 au. A fully grown
Saturn is placed in the 2:3 resonance with Jupiter at 4.5 au.
During the first 0.1 Myr, Jupiter and Saturn migrate from their
initial locations (3.5 and 4.5 au) to the tack locations (either 1.5
or 2.0 au for Jupiter, respectively). For the next 5 Myr, Jupiter
and Saturn migrate out to ∼5.4 au and ∼7.5 au, which are
appropriate initial conditions for late giant planet migration
models (Morbidelli et al. 2007). Walsh et al. (2011)
demonstrated that the migration speed of the gas giants has
almost no influence on the final architecture of the terrestrial
system. We therefore used the same linear inward migration of
the gas giants with a timescale of 0.1Myr, followed by outward
migration via an exponential prescription with an e-folding
time of 0.5 Myr. These timescales are comparable to the typical
rate of Type 2 migration (Lin & Papaloizou 1986).
To compare the effects of different formation models on the

architecture of the terrestrial planets, we use various initial
distributions of embryos and planetesimals.

3.1. Equal Mass Embryo Initial Conditions

For the first two large sets of simulations, we employ the
initial conditions of the embryos and planetesimals from
Jacobson & Morbidelli (2014), but we use our model for the
protoplanetary disk. These simulations were run because we
want to directly compare the results of our modified
simulations—employing a different protoplanetary disk,
including type 1 migration and a realistic mass–radius
relationship—with theirs. All of the simulations in this set
use equal-mass embryos initially situated between 0.7 and 3 au.
The embryos were embedded in a disk of planetesimals. The
surface densities of the embryos and planetesimals both scaled
with heliocentric distance as -r 3 2. Following Jacobson &
Morbidelli (2014), the total mass ratio of embryos and
planetesimals in this inner disk is 1:1, 4:1, or 8:1, with the
individual embryo masses being 0.025, 0.05, or 0.08 ÅM . The
equal-mass embryo assumption appears to agree with a pebble-
accretion scenario of embryo formation (Morbidelli et al. 2015;
Levison et al. 2015) rather than the more traditional oligarchic
growth scenario (Kokubo & Ida 1998), although which
scenario is favored is still a matter of considerable debate. To
mimic the coagulation evolution of the solids in the disk, we
follow Chambers (2006) and calculate the age of the disk to be
0.1Myr when embryos have a mass of 0.025 ÅM , 0.5 Myr
when the embryos have a mass of 0.05 ÅM , and 1Myr when
the embryos have a mass of 0.08 ÅM .
Following Jacobson & Morbidelli (2014) again, the total

mass in solids in the inner disk (embryos and planetesimals) is
4.3 ÅM when the total mass ratio between embryos and
planetesimals is 1:1, 5.3 ÅM when the mass ratio is 4:1, and
6.0 ÅM when the mass ratio is 8:1. Jacobson & Morbidelli
(2014) further argued that these different initial disk masses
were necessary to maintain the post-migration mass in solids
between 0.7 and 1 au close to 2 ÅM . Therefore, the surface
density in the solids between these different initial conditions
increases with increasing total embryo to planetesimal mass
ratio. The number of planetary embryos ranged from 29 to 213
depending on their initial mass and total mass ratio. We kept
the number of planetesimals at 2000, regardless of their total
mass. The initial densities of the planetesimals and embryos
was 3gcm−3 (Walsh et al. 2011). The permutations of these
initial conditions result in nine individual sets of simulations.

Figure 2. Contour plots of the normalized torque on a planetary embryo as a
function of semimajor axis and mass.
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Following Matsumura et al. (2016), for most of the
simulations, we also added an outer disk of planetesimals.
This disk consists of 500 planetesimals with a total mass of
0.06 ÅM . These planetesimals are, to some degree, considered
responsible for volatile delivery to the otherwise dry terrestrial
planets (Matsumura et al. 2016). The outer planetesimals are
distributed between 5 and 9 au. The eccentricities and
inclinations of both embryos and planetesimals are randomly
chosen from a uniform distribution between 0 and 0.01 and 0 to
0°.5, respectively. The other angular orbital elements were
chosen uniformly at random from 0° to 360°. We ran two sets
of these nine permutations, one with a tack at 1.5 au as in
Walsh et al. (2011), and one with a tack at 2 au as described in
Matsumura et al. (2016).

3.2. Oligarchic Initial Conditions

In addition to simulating the formation of the terrestrial
planets from a disk of equal-mass embryos and planetesimals,
we also run a second set of simulations where the initial
conditions are reminiscent of the traditional oligarchic growth
scenario (Kokubo & Ida 1998). To set up our simulations, we
used the semi-analytical oligarchic approach of Chambers
(2006). In that work, the mass of embryos increase up to their
isolation mass as

⎜ ⎟⎛
⎝

⎞
⎠t=m t m

t
tanh , 5p iso

3( ) ( )

where p= Sm a b2 siso is the isolation mass at semimajor axis a
for embryos spaced b au apart embedded in a disk with solid
surface density Ss. Here, τ is the growth timescale, which is a
complex function of the semimajor axis, embryo spacing, solid
surface density, and the radii of planetesimals that accrete onto
the embryos. The growth timescale is given by (Chambers
2006)
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Here, α is the slope of the solid surface density, β is the slope
of the temperature, rgas,0 is the gas density at 1 au in the
midplane, rc is the radius of planetesimals, ρ is their density,
and P is the orbital period (Chambers 2006). Here, we used the
fact that the gas density profile depends on the scale height and
the gas surface density, which yields r µ a b- - +ag

3 2 1 2 .
Combining all of the above gives
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where Ss is the solid disk surface density at 1 au and we
assumed that Ss has the same radial dependence as the gas
surface density. This derived value of τ and the subsequent
growth of any embryo near 1 au agrees well with Figure 1 in
Chambers (2006). Adopting a = 3 2 and b = 6 7, the above
equation is a reasonably steep function of the semimajor axis at
a fixed epoch because t µ ~a a193 140 1.38. When we use the
typically assumed value b = 1 2, then we have t µ a3 2. At
the Earth’s location, the growth time for nominal parameters is
∼600 kyr, while at Mars’ current orbit the growth time is
∼1Myr. This is somewhat shorter than that advocated by
Dauphas & Pourmand (2011), but is within error margins and
is easily increased to 1.8 Myr assuming that the accretion was
caused by planetesimals of ∼50 km.
We constructed our initial disk of embryos and planetesimals

as follows. First, we computed the total mass in solids between
0.7 au and 3 au assuming the surface density in solids to be
S = 7s gcm- -a 1 au2 3 2( ) . This setup is just the minimum-
mass solar nebula (Hayashi 1981). Second, following Ogihara
& Ida (2009), we subsequently increased the solid density by a
factor of three at the ice line, assumed to be static at 2.7 au.
Third, based on the results of Kokubo & Ida (1998), we
imposed a spacing of 10 mutual Hill radii for the embryos, with
the spacing computed assuming that the embryos had their
isolation masses. In other words, the semimajor axis of embryo
n is = +- a a b m M1 2 3n n 1 iso

1 3[ ( ) ], so that the embryo
spacing nearly follows a geometric progression. Following
Chambers (2006), we assumed a planetesimal size of 10 km in
computing the growth timescale of the embryos. Finally, we
entered the epoch at which Jupiter was assumed to have fully
formed and began migrating. This was either 0.5Myr, 1 Myr,
2 Myr, or 3 Myr. Most embryos have only reached a fraction of
their isolation mass and the remaining mass within their
feeding annulus of 10 Hill radii is taken up by planetesimals,
with each planetesimal having a mass of 10−3 ÅM . The
eccentricities of the embryos and planetesimals followed a
Rayleigh distribution with a scale parameter equal to

m M3p
1 3( ) . The inclinations also followed a Rayleigh

distribution with a scale parameter equal to half that of the
eccentricities. The other angles were chosen uniformly at
random between 0° and 360°. All of the embryos and
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planetesimals had an initial density of 3gcm−2. The most
distant embryo was typically at 2.6 au.

4. METHODOLOGY

The gas giants, planetary embryos, and planetesimals are
simulated using the symplectic SyMBA integrator (Duncan
et al. 1998) with a time step of 0.02 years for 150Myr. The end
time of the simulations corresponds closely to the end of the
purported Late Veneer (see the next section). The migration of
the gas giants was mimicked through the fictitious forces
described in Walsh et al. (2011). We first employed the same
gas profile as in Walsh et al. (2011) with two large dips around
the gas giants, which migrated inward with these planets, but
we modified the gas density profile during the computation so
that it followed the S µ -r r 1 2( ) surface density law of Bitsch
et al. (2015) rather than the Gaussian of Walsh et al. (2011).
The initial total mass of the disk was approximately 0.05 M .
The initial disk profile is depicted in Figure 3. The blue line is
the disk from Bitsch et al. (2015), whereas the red one is from
Walsh et al. (2011). Jupiter is assumed to be at 3.5 au and the
disk age is zero. The planetary embryos experienced tidal
damping of their eccentricities and inclinations and a negative
torque from the gas disk as described in Section2, and the
orbits of the planetesimals evolve due to gas drag using the
methods of Brasser et al. (2007). Following Walsh et al. (2011)
and Jacobson & Morbidelli (2014), for the purpose of the gas
drag, we assumed that each planetesimal had a radius of 50 km.
These planetesimals are larger than the 10 km size assumed for
oligarchic growth because we wanted to compare our
simulations directly with those of Jacobson & Morbidelli
(2014). The gas drag routines of Brasser et al. (2007) were
modified slightly to allow for a smooth transition between
those regimes where the Knudsen number crossed 1. We now
have the following scheme:

1. when > 2.727, CD=2 for all  and ;
2. when  > C1000, D = +0.44 0.2098 2 for
 < 2.727; and

3. when  < 1000
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Here , , and  are the Mach, Knudsen, and Reynold
numbers of the planetesimals, and CD is the drag coefficient
(Brasser et al. 2007). In addition to the drag coefficient routine,
we made one further modification to the code.
SyMBA treats collisions between bodies as perfect mergers,

preserving their density. This works well in most circum-
stances, but given that the mean density of Earth is 5.5 gcm−2

and not 3 gcm−2, we implemented the mass–radius relation-
ship of Seager et al. (2007) to make sure that the final planets
have radii comparable to the current terrestrial planets, so that
their collisional cross sections are not artificially large. The
relation we employed was
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where Rp and Mp are the radius and mass of the planetary
embryo. This relation fits Mars, Venus, and Earth well.
During the simulations, we computed the mutual gravity

between gas giants and embryos, but the planetesimals were
not able to affect each other. This approximation was used to
keep the CPU time within reasonable limits, and is justified
because Jupiter clears the disk beyond 1 au in 100 kyr. Planets
and planetesimals were removed once they were farther than
100 au from the Sun (whether bound or unbound) or when they
collided with a planet or ventured closer than 0.2 au from
the Sun.
For each permutation of the equal-mass embryo initial

conditions of Jacobson & Morbidelli (2014), we ran 16
simulations (144 for each tack location). Meanwhile, for the
oligarchic initial conditions, we ran 16 simulations for each
starting epoch (64 for each tack location). In total, we ran 416
simulations, categorized in Table 1. The oligarchic simulations
were run at the Centre for Computational Astrophysics at the
National Astronomical Observatory of Japan, while the others
were run at the Earth Life Science Institute at the Tokyo
Institute of Technology.

5. A MEASURE OF SUCCESS

According to its founders, the Grand Tack model has
recorded several successes. These include, but are not limited
to, the following: the ability to reproduce the mass-orbit
distribution of the terrestrial planets (Walsh et al. 2011; though
mostly only for Venus, Earth, and Mars), the compositional
gradient and total mass of the asteroid belt (Walsh et al. 2011),
the growth timescale of the terrestrial planets (Jacobson &
Walsh 2015) and in some cases the angular momentum deficit
(AMD), the spacing and orbital concentration of the terrestrial
planets (Jacobson & Morbidelli 2014), and possibly the timing
of the moon-forming impact (Jacobson et al. 2014). Some of
these deserve further discussion before we outline our criteria
for assigning success or failure to the individual simulations
and the model itself.

Figure 3. Density profile of the gas disk with Jupiter at 3.5 au and the disk age
at 0. The blue line is the disk we employed from Bitsch et al. (2015) and the red
line is the disk profile of Walsh et al. (2011).
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Jacobson et al. (2014) use simulations of terrestrial planet
formation based on the Grand Tack model to place constraints
on the time of the moon-forming impact (also known as the
Giant Impact or GI). They do this by requiring that, after the
GI, the Earth subsequently accreted a further 0.5% of its mass,
which they claim is the best estimate compatible with the
fraction of highly siderophile elements in the mantle used to
account for the Late Veneer (Walker 2009). From their
simulations, they arrive at a timing of 95±32Myr. This is
in agreement with the preferred moon-forming time from
hafnium-tungsten and samarium-neodymium geochronology,
although it is on the higher end (Kleine et al. 2005; Touboul
et al. 2007). It is also in agreement with recent dynamical
modeling and -40 39Ar age compilations for the HED
meteorites that likely originated from asteroid 4 Vesta (Bottke
et al. 2015). In most of the simulations presented by Jacobson
& Morbidelli (2014), however, the last giant impact occurs
much earlier than their preferred value. O’Brien et al. (2014)
pointed out that such an early impact violates the constraint
posed by the amount of highly siderophile elements in the
Earth’s mantle used to define the Late Veneer in the first place.
That said, a late accretion of 1% is still entirely within reason,
and it may have been even higher: Albaréde et al. (2013) argue
that upward of 4% of Earth’s mass was added to the planet by
the Late Veneer. Their arguments are based on the timing and
amount of water delivery, and the vaporization of volatiles
during accretion, throughout which a high fraction of impactor
material is lost. Such a substantial amount of post-GI accretion
would naturally push the epoch of the moon-forming impact
much further back in time, and leaves the timing issue once
again wide open. A different approach or chronometer may be
needed.

Marty (2012) argues for an Earth formation time shorter than
50Myr. In a subsequent study, Avice & Marty (2014) use
iodine, plutonium, and xenon isotopic data to suggest that the
closure time of the Earth’s atmosphere is -

+40 10
20 Myr, which

would naturally coincide with the moon-forming event. The
formation time suggested by Avice & Marty (2014) is in
excellent agreement with the hafnium-tungsten dates of Kleine
et al. (2005; 40± 10Myr), but is on the lower end of that
advocated by Touboul et al. (2007; 62-

+
30
92 Myr) and Halliday

(2008; 70–100Myr). In summary, the timing of the moon-
forming event is still a topic of ongoing debate. It appears that
radiogenic dating results in an earlier GI time than is suggested
by the simulations of Jacobson et al. (2014), although the

simulation results depend sensitively on the assumed amount of
subsequent accretion. Most of the reported ages agree within
the error bars, but the range remains at tens of millions of years.
Since individual simulations are chaotic and show a great

variety of outcomes (Jacobson & Morbidelli 2014), we impose
criteria that the model must adhere to, which are listed below.
In what follows, we define the Mercury, Venus, Earth, and
Mars analogs to have masses and semimajor axes within
the ranges < < < <Å ÅM m M a0.025 0.1 , 0.27 au 0.5 au( ),

< < < <Å ÅM m M a0.4 1.2 , 0.55 au 0.85 aup( ),
< < < <Å ÅM m M a0.5 1.5 , 0.85 au 1.15 aup( ), and
< < < <Å ÅM m M a0.05 0.15 , 1.3 au 1.7 aup( ). We

require that objects in the region of the asteroid belt have their
perihelia at >q 1.6 au and their aphelia at <Q 4.5 au. We
want to add a note of caution. Since we employ initial
conditions very similar to those of Walsh et al. (2011) and
Jacobson & Morbidelli (2014), we expect to have a very low
probability of reproducing the mass and semimajor axis of
Mercury. One may then argue that we should only base our
analysis on the other three terrestrial planets, but we decided
against doing so.
Chambers (2001) introduced several quantities which

describe the general dynamical properties of a planetary
system. These are the following. First is the Angular
Momentum Deficit (AMD), given by

å m
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where m = m Mk k . Second is the fraction of mass in the most
massive planet (Sm). Third is a concentration parameter (Sc),
given by
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and last is a mean spacing parameter (SH), which is
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Unlike Chambers (2001), we use the mutual Hill sphere as the
spacing unit. Ultimately, we invoke the following criteria to
determine the success or failure of the Grand Tack model:
statistically, the resulting terrestrial systems must have a lower

Table 1
Summary of the Individual Sets of Simulations

Equal Mass Embryos

Embryo Mass( ÅM ) M M:emb pl Tack Location Migration Epoch (Myr)

0.025 1:1, 4:1 or 8:1 1.5 au or 2 au 0.1
0.05 1:1, 4:1 or 8:1 1.5 au or 2 au 0.5
0.08 1:1, 4:1 or 8:1 1.5 au or 2 au 1

Oligarchic
Migration Epoch (Myr) Tack Location

Oligarchic 0.5 1.5 au or 2 au
Oligarchic 1 1.5 au or 2 au
Oligarchic 2 1.5 au or 2 au
Oligarchic 3 1.5 au or 2 au

Note. For each set of initial conditions, we ran 16 simulations.
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median AMD than the current value, a concentration parameter
of 107±67 (2σ), a mean spacing in Hill radii of 45±12 (2σ),
a mass parameter of>0.5, they must produce at least one Mars
analog (or a probability in excess of 5% for a whole set), and
the most massive planet must have a greater than 5%
probability of residing at 1 au, i.e., the cumulative semimajor
axis distribution of the most massive planet must be lower than
0.95 at 1 au. The ranges in the listed values of Sc and SH are
computed using a Monte Carlo method adopting the range of
masses and semimajor axes of our terrestrial planet analogs
stated above.

6. RESULTS: TACK AT 1.5 au

In this section, we present the results of our numerical
simulations.

6.1. Equal Mass Embryos

We have run the same simulations as in Jacobson &
Morbidelli (2014) in order to compare our results directly to
theirs, and to determine whether a different protoplanetary disk
model, realistic mass–radius relationship, and the inclusion of
type 1 migration will substantially change the properties of the
resulting planets. Generally, we find that most of our results are
in good agreement. We do not provide a full comparison, but a
systematic overview is presented and we highlight some
similarities and differences.

In Figure 4, we compare the mass of each terrestrial planet
that formed in our simulation versus their semimajor axis. The
actual terrestrial planets are depicted as red bullets. For the
most part, our results agree with Figure 1 in Jacobson &
Morbidelli (2014). In our simulations, however, the peak of the
distribution is situated near Venus’ current location, while the
region near Earth is empty in comparison. This is not the case
for Jacobson & Morbidelli (2014) where the peak is in between
these planets, encompasses both, and is probably caused by
early type 1 migration of the embryos. The mean semimajor
axis and mass of the most massive planet in our simulations are
á ñ = a 0.769 0.109 auh and á ñ = m 0.969 0.189h ÅM ,
respectively, with almost no variation within error bars as a
function of either the embryo seed mass or total embryo to
planetesimal mass ratio. Thus, our Venus analog is almost
always more massive than the Earth analog and, with more than
95% confidence, the position of the most massive planet is
inconsistent with a location at 1 au. This result is inconsistent
with the findings of Jacobson & Morbidelli (2014) and we
attribute this difference to the following: our use of a distinctive
model for the protoplanetary disk with generally higher surface
density, which causes stronger tidal damping; the inclusion of
type 1 migration; and smaller planetary radii. Indeed, any
material that is shepherded inward by Jupiter will be at high
eccentricity and will be damped by interaction with the gas
disk, which in turn will cause further inward migration since
our gas disk has a higher surface density and stronger damping
than in Jacobson & Morbidelli (2014). We emphasize that the
inward migration caused by the damping forces is generally
stronger than the direct effect of the type 1 term, so that even
using the non-isothermal prescription of Paardekooper et al.
(2011) would not substantially change the outcome.

In summary, our setup causes a peak density in solids near
Venus’ current position rather than in between Earth and
Venus, as in Jacobson & Morbidelli (2014). For this reason, we

ran another set of simulations with a tack location at 2 au rather
than the typical location of 1.5 au to determine whether or not
that would produce more Earth analogs. We also report a low
success in producing Mercury analogs, similar to Jacobson &
Morbidelli (2014), which, like them, we attribute to our initial
conditions.
How do the resulting planets fare otherwise? In Figure 5, we

plot the spacing parameter SH versus the mass parameter Sm in
the top panel and the concentration parameter Sc versus the
normalized AMD (normalized to the current value) in the
bottom panel. The typical value of Sc decreases with AMD
because the higher eccentricities force the planets to be wider
apart if they are to remain stable. In this figure and the ones that
follow, the red symbols correspond to simulations with an
initial embryo mass of 0.025 ÅM , green to an initial embryo
mass of 0.05 ÅM , and blue to an initial embryo mass of
0.08 ÅM . Bullets represent simulations with a total embryo to
planetesimal mass ratio of 1:1, squares are for a 4:1 mass ratio,
and triangles are for an 8:1 mass ratio. The large black bullet
denotes the current terrestrial system while the gray bullet is for
the system consisting of only Venus, Earth, and Mars. The
beige regions denote 2σ regions around the mean values of SH,
Sm, and Sc. The scaled AMD range was chosen not to exceed 1
because it will increase with time (Laskar 2008; Brasser
et al. 2013); the lower limit was chosen somewhat arbitrarily.
Roughly 40% of all of our simulations fall in either one of the
beige regions, though only 10% fall in both regions
simultaneously. The results are summarized in Table 2. We
reproduce the trend of Jacobson & Morbidelli (2014) wherein
the AMD increases with a decrease in total planetesimal mass,
though not with initial embryo mass. Jacobson & Morbidelli
(2014) favor the cases with a high embryo to planetesimal mass
ratio, but the high resulting AMD is inconsistent with the
dynamical evolution of the terrestrial planets (Laskar 2008;
Brasser et al. 2013). Jacobson & Morbidelli (2014) acknowl-
edge that the high AMD is a potential problem, but they
suggest that fragmentation during embryo–embryo collisions
could produce sufficient debris to damp the AMD through
dynamical friction. It is not clear whether or not this can be
sustained if collisional grinding is important. Further study is
needed to support or deny this claim.
The terrestrial system consists of four planets. We find that

the average final number of planets decreases with initial
embryo mass and is mostly independent of the initial total mass
ratio between the planets and embryos. The relatively high
number of planets with low embryo seed mass is most likely
skewed by stranded embryos in the asteroid belt or near Mars’
current position. The concentration parameter Sc increases with
more massive embryos but decreases for a lower planetesimal
mass, most likely because the AMD is higher and the planets
need to be spaced farther apart to remain dynamically stable.
We define the average probability of producing a terrestrial

planet analog as the fraction of planets in the designated mass-
semimajor axis bin divided by the total number of produced
planets. For a Venus analog, this is 24% 7%, for an Earth
analog it is 10% 3%, and for a Mars analog it is 10% 4%.
All of these values are above the 5% threshold, but we see an
overabundance of Venus analogs consistent with the density
pileup reported earlier. We produced a total of two Mercury
analogs (out of 635 planets).
Thus far, it appears that the only difference between our

results and those of Jacobson & Morbidelli (2014) is our peak
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mass distribution being closer to the Sun than theirs, most
likely because of our different disk model. Our results also
differ when we investigate the timing of the moon-forming
impact. Following Jacobson et al. (2014) and Jacobson &
Morbidelli (2014) again, we compute the total amount of mass
accreted by each planet between its last giant impact and the
end of the simulation. We then plot this with a high-order
polynomial best fit. The approximate timing of the moon-
forming impact is the intersection of the fit and some assumed
Late Veneer mass (Jacobson et al. 2014), which is at most a
few percent of an Earth mass (Albaréde et al. 2013). The lower
the amount of the assumed late-accreted mass, the later the
giant impact had to occur because then less mass would had to
have been around to impact the Earth afterward.

We plot our results in Figure 6 and obtain a best-fit value of
64Myr for the timing of the moon-forming event assuming 1%
subsequent accretion. This is in good agreement with the Hf-W
results from Kleine et al. (2005) and Touboul et al. (2007), but
is also sooner than what was suggested in the simulations of
Jacobson et al. (2014). The difference in timing is most likely
due to the fact that we consider an accreted Late Veneer mass
of 1% rather than 0.5%. However, the range of mass accreted
after the giant impact is rather large. From the figure, it is clear
that this impact could have occurred anywhere between 30Myr

and 120Myr, given the range of late accretion masses and
uncertainties in the fit. Therefore, we do not think that our
simulations, or others such as those of Jacobson et al. (2014)
for that matter, can confidently predict the timing of the moon-
forming event with this method.
Another issue that requires attention is the growth of Mars.

Jacobson & Morbidelli (2014) conclude that it is very difficult
to reproduce the rapid growth of Mars as advocated by
Dauphas & Pourmand (2011). Figure 7 shows the evolution of
the mass of several Mars analogs produced in our simulations
as a function of time. The beige region should be avoided
because the growth rate in this region is inconsistent with the
Hf-W chronometer of Mars’ formation (Nimmo & Kleine
2007). The blue dashed curve shows a stretched exponential
growth function tµ - - bm m t1 expMars ( [ ( ) ]). We fit a seed
mass of 0.04 ÅM , a stretching parameter of b ~ 0.5, and an e-
folding time of t ~ 10 Myr. These values are nearly identical
to the growth of Earth and Venus (Jacobson & Walsh 2015).
Some Mars analogs experience early giant impacts with other
embryos, substantially increasing their mass, but even then the
final growth is slow and inconsistent with the rapid growth
advocated by Dauphas & Pourmand (2011), though still within
limits of the Hf-W chronology of Nimmo & Kleine (2007).

Figure 4. Final mass of the terrestrial planets ÅM[ ] vs. their semimajor axis [au]. The text above the panels indicates the embryo mass in Earth masses and the ratio of
the total embryo to planetesimal mass. The beige regions indicate the range of our terrestrial planet analogs. Equal-mass embryo initial conditions with a tack at 1.5 au.
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One last thing that was not actively reported by Walsh et al.
(2011), Jacobson & Morbidelli (2014), or O’Brien et al. (2014)
is the amount of remaining mass in planetesimals. At the end of
our simulations, we typically have a remnant mass in
planetesimals of 0.051 Å ÅM M0.027 , which is comparable
to the total mass required to reproduce the Late Veneer
(Raymond et al. 2013). The remnant mass depends on the
original total mass ratio between planetary embryos and
planetesimals. The simulations with an initial 1:1 ratio have a
typical final mass of 0.08 ÅM while the 8:1 simulations
typically have 0.01 ÅM . The decay follows a stretched
exponential with best fits of b = 0.43 0.03 and
b t = log 0.40 0.04, which are comparable to the results
of Jacobson & Walsh (2015). Thus, after 150Myr of evolution,
the terrestrial planets would subsequently accrete an amount
comparable to the Late Veneer. This could be problematic if
the total accreted mass on the Earth after lunar formation is of

the order of 1% because the subsequent accretion would
overshoot the accepted 1% value, but only by a small amount.

6.2. Oligarchic Embryos

In this subsection, we report the results of Grand Tack
simulations with oligarchic initial conditions. Since we do not
expect substantial differences between this model and the
equal-mass embryo one of Jacobson & Morbidelli (2014), we
will only report on the overall results.
Figures 8 and 9 are the oligarchic equivalents of Figures 4

and 5. It appears that the correspondence with the real
terrestrial system worsens as the time of the onset of migration
increases. In the second figure, the red dots represent those
simulations where the disk age (time of the onset of migration)

Figure 5. Top panel: scatter plot of the spacing parameter SH vs. the mass parameter Sm. Red symbols correspond to simulations with an initial embryo mass of
0.025 ÅM , green to an initial embryo mass of 0.05 ÅM , and blue to an initial embryo mass of 0.08 ÅM . Bullets are for simulations with a total embryo to planetesimal
mass ratio of 1:1, squares are for a 4:1 mass ratio, and triangles are for an 8:1 mass ratio. Bottom: scatter plot of concentration parameter Sc vs. normalized AMD.
Equal-mass embryo conditions with a tack at 1.5 au.

Table 2
Properties of the Terrestrial Systems with a Tack at 1.5 au and Equal-mass

Embryos

Embryo
Mass( ÅM ) á ñn á ñSc á ñAMD á ñSH

0.025 5.0±1.1 66±16 2.2±2.2 (1.5) 40±11
0.05 4.4±1.3 71±29 2.6±3.3 (1.5) 40±11
0.08 3.7±1.0 97±53 1.6±3.1 (0.35) 34±10

M M:emb pl á ñn á ñSc á ñAMD á ñSH

1:1 4.1±1.1 101±47 1.1±1.5 (0.37) 37±13
4:1 4.8±1.2 72±33 2.0±3.0 (1.0) 37±10
8:1 4.3±1.4 62±19 3.3±3.4 (2.11) 40±10

Note. We list the average number of planets, concentration parameter, AMD,
and average spacing with their standard deviations. Since the AMD distribution
usually has a long tail, we list the median value in parentheses. Figure 6. Last giant impact as a function of time vs. subsequent accreted mass.

The beige region comprises the amount constrained by highly siderophile
elements in the Earth. Equal-mass embryo initial conditions with a tack
at 1.5 au.
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is 0.5 Myr. The orange dots represent a disk age of 1Myr,
green represent 2 Myr, and blue represent 3 Myr. There are a
few visible trends. First, the final AMD value tends to increase
with increasing disk age. This is unsurprising because the total

mass in planetesimals decreases as the disk ages, and so there is
less mass to exert dynamical friction on the forming planets.
Half of all systems are within the AMD-Sc boundaries in the
bottom panel, but only 11% in the S SH m– plot at the top,
implying that only 5% fall into both regions simultaneously,
which is lower than in the equal-mass embryo case. The equal-
mass simulations have nearly uniform spacing anywhere from
20 to over 50 Hill radii. Systems with older disk ages are more
widely spaced, while systems with younger disk ages—and
therefore lower embryo seed masses and more mass in
planetesimals—tend to be compact, with a typical spacing of
20 Hill radii, reminiscent of extrasolar systems (Fang & Margot
2013). The older systems also tend to have fewer planets, and
these planets all appear to be of similar, sub-Venus masses
because we observe a trend of a decreasing number of planets
with older disk ages. The mean number of planets as a function
of disk age are listed in Table 3.
Visually, the results from the oligarchic model appear to be

different from the equal-mass embryo setup, but the models are
statistically nearly identical (see Table 3). We report no
Mercury analogs, a probability of 32% 3% for Venus
analogs, 10% 5% for Earth analogs, and 9% 5% for
Mars analogs. The location and mass of the most mas-
sive planet are á ñ = a 0.782 au 0.089 auh and á ñ=mh

Å ÅM M0.805 0.160 , which are on the low side for both
quantities. Once again, the semimajor axis of the most massive
planet is statistically inconsistent with that of Earth. In addition,

Figure 7. Evolution of mass with time for several Mars analogs. The beige
region should be avoided because the formation time is inconsistent with the
Hf-W chronometer (Nimmo & Kleine 2007). The blue curve is a Weibull
cumulative distribution with e-folding time t = 10 Myr, stretching parameter
b = 0.5, and embryo seed mass 0.04 ÅM .

Figure 8. Final mass of the terrestrial planets vs. their semimajor axis. The text above the panels indicates the time at which Jupiter and Saturn formed and migrated
into the inner solar system. Beige regions indicate the range of our terrestrial planet analogs. Oligarchic initial conditions with a tack at 1.5 au are assumed.
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unlike the equal-mass embryo case, we did not change the disk
mass from one set of of simulations to the next, which could
account for the lower mass of the most massive planet.

We point out that we only tested the oligarchic initial
conditions for disk mass with a surface density of S = 70
gcm−2 at 1 au. It is possible that a higher initial surface density
would lead to higher planetary masses at the end of the
simulations. That being said, it is unclear whether or not a
higher surface density would increase the typical spacing
between the planets because of the weak dependence of the Hill
radius on the mass.

When investigating the timing of the moon-forming impact,
we arrive at a time of 100Myr, but once again the range is
large, from 20 to 120Myr. The nominal value is a little later
than favored by the geochronology (Kleine et al. 2005;
Touboul et al. 2007) or the plutogenic-xenon arguments
of Avice & Marty (2014). In any case, the mass left
in planetesimals after 150Myr of simulation is
0.045 Å ÅM M0.029 , which is comparable to the equal-mass
embryo case. Both the timing of the moon-forming impact and
the remnant mass are statistically the same as in the equal-mass
embryo case. Finally, the growth of Mars proceeds similarly to
that depicted in Figure 7. In summary, both the oligarchic
model and the equal-mass embryo model are statistically

identical within the error margins, and we cannot favor one
over the other. Further study is needed to distinguish between
the two.

7. RESULTS: TACK AT 2 au

The simulations with a tack at 2 au were performed to
determine whether a more distant tack location would result in
the Earth analog being generally more massive than the Venus
analog and whether it improves the overall fit of the model with
the current architecture of the terrestrial planets. Since much of
the underlying dynamics are the same, we will only report the
highlights.

7.1. Equal Mass Embryos

Figure 10 is a scatter plot of the final semimajor axis and
masses of the planets produced in our simulations. The wider,
more massive disk will naturally produce more massive planets
over a wider range of heliocentric distances, and the plot should
be compared with Figure 4. There are two visual differences
between the two sets of outcomes. First, the peak of the
distribution is now farther out than with a tack at 1.5 au.
Indeed, the mean semimajor axis of the most massive planet is
at á ñ = a 0.91 au 0.19 auh , which is much closer to the
current position of Earth than with a tack at 1.5 au. The most
massive planet now has a mean mass of á ñ=mh

Å ÅM M1.15 0.26 , which is more massive than Earth but well
within the error margins. This increased mass is most likely
caused by the accretion annulus being wider, having been
truncated at 1.25 au rather than at 1 au. The outward tail is also
caused by the same effect. We explore whether this also
implies that a tack at 2 au produces a better overall outcome.
First, we report that the average probability of producing a

Venus analog is 17% 4%, an Earth analog is 13% 5%,
and a Mars analog is 5% 3%. We also produce some

Figure 9. Top panel: scatter plot of the spacing parameter SH vs. the mass parameter Sm. Red symbols correspond to simulations with a disk age of 0.5 Myr, orange to
an initial disk age of 1 Myr, green dots have an initial disk age of 2 Myr, and blue ones have 3 Myr. Bottom: scatter plot of concentration parameter Sc vs. normalized
AMD. Oligarchic with tack at 1.5 au.

Table 3
Same as Table 2 for the Oligarchic Initial Conditions and a Tack at 1.5 au

Disk Age (Myr) á ñn á ñSc á ñAMD á ñSH

0.5 3.8±0.7 133±26 0.32±0.33 (0.18) 26±9
1 3.7±0.7 120±28 0.23±0.17 (0.18) 29±6
2 3.2±0.6 127±71 1.73±2.64 (0.47) 38±9
3 2.6±0.6 110±64 7.1±5.3 (4.3) 52±13
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Mercury analogs ( 0.55% 0.83%). Overall, the production of
Venus and Earth analogs is similar, while the production of
Venus analogs was more than twice as high as Earth analogs
when the tack occurred at 1.5 au. The production of Mars
analogs is low, at the threshold of acceptability, caused by the
fact that we generally create more massive planets near Mars’
current position than with a tack at 1.5 au.

Compared to the equal-mass embryo simulations with a tack
at 1.5 au, the planetary systems generated here on average have
more planets. This is especially true for the cases with embryos
of 0.025 ÅM and a high mass in planetesimals. We list the
number of planets and the standard deviation in Table 4. In
Figure 11, we once again plot the spacing parameter SH versus
the mass parameter Sm in the top panel and the concentration
parameter Sc versus the normalized AMD in the bottom panel.
A similar trend of decreasing Sc with increasing AMD is
visible, but not as pronounced. What is clear is that all of the
systems have a concentration lower than or equal to that of the
current terrestrial planets; none of them are higher (bottom
panel). Since most systems have a spacing that is more compact
than the current terrestrial planets (top panel), the lower
concentration implies a lower variation in mass between the
planets, which is generally what is observed in Figure 10.
Things take a turn for the worse when we try to match the

ranges of Sc, Sm, SH, and AMD simultaneously. We find that
only 3/144 cases do so, which is lower than the 5% threshold
that we have adopted, and much lower than the 10% reported
earlier when the tack was at 1.5 au. This low probability argues
against a tack location at 2 au being suitable to reproduce the
current architecture of the terrestrial planets with the equal-
mass embryo initial conditions, despite the visual accuracy of
the fit. We generally find that Sc is low while SH and AMD are
comparable to the case with a tack at 1.5 au, suggesting that the
mass distribution is narrower and the mass variations between

Figure 10. Final mass of the terrestrial planets vs. their semimajor axis. The text above the panels indicates the embryo mass in Earth masses and the ratio of the total
embryo to planetesimal mass. Beige regions indicate the range of our terrestrial planet analogs. Equal-mass embryo initial conditions with a tack at 2 au.

Table 4
Same as Table 2, but for the Equal Mass Embryos Initial Conditions and a Tack

at 2 au

Embryo Mass( ÅM ) á ñn á ñSc á ñAMD á ñSH

0.025 5.4±1.5 46±8 3.2±2.8 (2.6) 33±8
0.05 4.5±1.0 53±13 2.4±3.9 (0.93) 33±8
0.08 4.4±1.0 52±15 2.1±3.1 (0.74) 32±8

M M:emb pl á ñn á ñSc á ñAMD á ñSH

1:1 5.0±1.0 61±13 1.0±1.4 (0.36) 28±7
4:1 4.9±1.4 45±9 2.6±3.3 (1.1) 34±8
8:1 4.5±1.4 45±9 4.1±4.0 (3.1) 36±7
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planets are less extreme. Most of the concentration values are
low but within the acceptable range.

The last two issues are the timing of the moon-forming
impact, which is at 60Myr but with the same range (30Myr to
120Myr) as reported earlier, and a left-over planetesimal mass
of Å ÅM M0.053 0.04 , once again on the high end but in
agreement with simulations having a tack at 1.5 au. The
simulations with an initial 1:1 ratio have a typical final mass of
0.1 ÅM , while the 8:1 simulations typically have 0.02 ÅM . The
decay follows a stretched exponential with best fits of
b = 0.44 0.03 and b t = log 0.52 0.05, which results in
a slower decay than with a tack at 1.5 au and explains the
higher left-over mass.

7.2. Oligarchic Embryos

In the previous subsection, we investigated whether or not a
tack location at 2 au would yield a better outcome for the
overall architecture of the terrestrial planets than a tack at 1.5 au
in the case of equal-mass embryo initial conditions. We
concluded that it appears to be difficult for this combination of
tack location and initial conditions to simultaneously reproduce
the combined spacing, concentration, mass distribution, and
AMD of the terrestrial planets, despite generating more Earth
analogs and with the heaviest planet being closer to Earth’s
current location. It is now worth investigating whether the
oligarchic system fares any better.

Figures 12 and 13 depict the relation between the mass and
semimajor axis, as well as the spacing, concentration, mass,
and AMD distributions as usual. Once again, we see a broader
semimajor axis-mass distribution and an overall closer spacing
and lower concentration. The concentration is, however,
generally a little higher than in the equal-mass embryo case.
Indeed, we find that 10% of the outcomes fall within both beige
regions simultaneously, which is higher than for the equal-mass

embryo case and comparable to the simulations with a tack at
1.5 au. The production of terrestrial planet analogs is similar to
that in the equal-mass embryo case above, so that we tend to
produce more planets on average than with a tack at 1.5 au, but
somewhat fewer than the equal-mass embryo case with a tack
at 2 au. The final results are listed in Table 5.
Similarly to the equal-mass embryo case with a tack at 2 au,

we produce Venus analogs 20% 3% of the time, Earth
analogs 13% 3% of the time, and Mars analogs with a
probability of 6% 3%. The wider mass annulus also results
in the heaviest planet having a mean semimajor axis of
á ñ = a 0.96 au 0.18 auh , but its mean mass remains a little
low at á ñ = Å Åm M M0.88 0.18h , probably because we did not
enhance the disk mass per set of simulations as we did for the
equal-mass embryo case. Once again, the concentration value is
low and we see ~S 25H Hill radii for early disk ages and an
increase in AMD with disk age.
The moon-forming impact occurs at 90Myr, ranging from

30 to 120Myr depending on the amount of late accretion. The
mass in left-over planetesimals is comparable to earlier
simulations at Å ÅM M0.054 0.038 .

7.3. Summary

The summary of our results is displayed in Table 6. The
criteria we consider important are whether or not the model can
produce Mars with a probability higher than 5%, whether or not
the architecture of the system in terms of spacing, concentra-
tion, mass and AMD is consistent with the current planets, and
whether or not the mass and semimajor axis of the heaviest
planet are consistent with those of Earth. The moon-forming
impact is a less stringent criterion because of the inherent
uncertainty in the late-accreted mass and the wide range of ages
that appear as a result. All that matters is that it is within the

Figure 11. Top panel: scatter plot of the spacing parameter SH vs. the mass parameter Sm. Red symbols correspond to simulations with an initial embryo mass of
ÅM0.025 , green to an initial embryo mass of ÅM0.05 , and blue to an initial embryo mass of 0.08 ÅM . Bullets are for simulations with a total embryo to planetesimal

mass ratio of 1:1, squares are for a 4:1 mass ratio, and triangles are for an 8:1 mass ratio. Bottom: scatter plot of concentration parameter Sc vs. normalized AMD.
Equal-mass embryo conditions with a tack at 2 au.
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Figure 12. Final mass of the terrestrial planets vs. their semimajor axis. The text above the panels indicates the time at which Jupiter and Saturn formed and migrated
into the inner solar system. Beige regions indicate the range of our terrestrial planet analogs. Oligarchic initial conditions with a tack at 2 au.

Figure 13. Top panel: scatter plot of the spacing parameter SH vs. the mass parameter Sm. Red symbols correspond to simulations with a disk age of 0.5 Myr, orange to
an initial disk age of 1 Myr, green dots have an initial disk age of 2 Myr, and blue ones 3 Myr. Bottom: scatter plot of concentration parameter Sc vs. normalized
AMD. Oligarchic with tack at 2 au.
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error bars of the reported hafnium-tungsten ages, which it is,
but it does not provide any further constraints on the model.

It appears that most initial conditions work to some extent. A
tack at 2 au is able to place the most massive planet near
Earth’s current location, and thus is the only model to satisfy
the semimajor axis constraint of the heaviest planet. This
statistically rules out a tack at 1.5 au considering the constraints
that we impose and the disk parameters and migration
prescription that we used. However, the equal-mass embryo
case with a tack at 2 au is problematic because of its poor
ability to reproduce the spacing, concentration, mass, and
AMD ranges simultaneously. We are confident that this low
probability is inherent in the model and is not caused by
sampling, and therefore we also rule it out. This leaves us with
the oligarchic model with a tack at 2 au. The remnant mass in
planetesimals is an obvious concern, but the somewhat low
mass of the most massive planet when the tack occurred at 2 au
cannot be statistically rejected. The disk age in the oligarchic
model that best matches all of the constraints is 2 Myr, which is
a typical time range to form the gas giants.

We point out that the above conclusions, drawn from
Table 6, are valid for the disk model that we have employed.
We return to its implications in the next section. One thing we
have not mentioned thus far is the total mass of material that we
place in the asteroid belt. This matter is discussed in detail in
the next section.

8. DISCUSSION

In this study, we ran a high number of terrestrial planet
simulations in the framework of the Grand Tack model with a
range of initial conditions and two different tack locations. In
the previous subsection, we concluded that, despite using a
different model for the protoplanetary disk, the inclusion of
type 1 migration and a realistic mass–radius relationship, the
outcomes of our simulations are broadly similar, though each
setup has its own unique pros and cons.

We have decided to use a different disk model than the
traditional setup of Walsh et al. (2011) and we have outlined
our reasons for doing so. We find that a tack at 1.5 au leaves
too much mass near Venus’ location. We attribute this to a
combination of type 1 migration and inward shepherding by
Jupiter, which decreases the semimajor axis of material down
to below 1 au but increases the eccentricity, so that further
inward migration will ensue. This raises the question as to how
sensitive our results are to the choice of disk model. This can
only be answered by running more simulations with varying
disk parameters, which is beyond the scope of the current
study. We have used a relatively hot and puffy disk with a scale
height that is higher than traditional values (Hayashi 1981;
Tanaka et al. 2002; Tanaka & Ward 2004), which is caused by
viscous heating in the inner disk. This higher scale height
causes slower embryo migration. Thus, making use of a colder,
thinner disk would likely have exacerbated the overproduction

of Venus analogs with a tack at 1.5 au. One way to mitigate this
problem is to use a much lower surface density, as was done by
Walsh et al. (2011) and Jacobson & Morbidelli (2014) but their
values seem artificial. A much lower surface density would
decrease the migration rate of Jupiter and Saturn, and even
though their migration rate does not appear to affect the final
orbital architecture of the terrestrial system (Walsh et al. 2011),
it does increase the difficulty for these planets to reach their
final positions beyond 5 au (D’Angelo & Marzari 2012). Thus,
even when using a colder, less-massive disk, we still expect to
see an overproduction of Venus analogs when the tack
occurred near 1.5 au.
A second topic concerns the timing of the moon-forming

impact. We generally find agreement between our typical time
of 60–90Myr and geochronology. However, our uncertainties
are typically 30Myr or longer, suggesting that GI occurred
anywhere from 30Myr to 120Myr, which is what we have
claimed in the previous sections. It is debatable whether this
range implies anything meaningful. It is consistent with the
value 95±32Myr reported in Jacobson et al. (2014), even
though they ran their simulations for a little longer and used a
much smaller amount of late-accreted mass. In summary, we do
not think that our simulations, or those of Jacobson et al.
(2014), can say anything meaningful about the timing of the GI
beyond what is known from geochronology.
Another issue that requires discussion is the mass left over in

planetesimals after planet formation. This is typically 0.05 ÅM
but can be as high as 0.1 ÅM . This left-over mass has
implications for the cratering rates on Noachian Mars and the
Pre-Nectarian moon. The most efficient way to eliminate this
material is through collision with the terrestrial planets.
Ejection by the giant planets or collisions with the Sun is
much more difficult. Preliminary simulations of this population
of planetesimals indicate that it decays slowly, following a
stretched exponential with a stretching parameter of b ~ 0.83
and an e-folding time of τ ∼ 85Myr. A slow decay is preferred
by lunar cratering records (Werner et al. 2014), but a slower
decay is necessary so as not to have late melting of the crust of
the planets (Abramov et al. 2013, Abramov & Mojzsis 2016).
One solution may be for these planetesimals to grind

themselves to dust and subsequently be lost through Poynting-
Robertson drag or radiation pressure. The difficulty with this
idea is that the high ratio of highly siderophile elements in the
Earth and moon suggest that the Late Veneer impactors were
large (around 2000 km; Bottke et al. 2010). If these impactors
were large, then there is no reason to believe that the impactors
after the Late Veneer were substantially smaller. A simple
argument is that Ceres is the only 1000 km body in the asteroid
belt, and with a typical implantation probability of 0.1%
(Walsh et al. 2011), there should have been at least 1000 Ceres-
sized bodies. With of the order of 5% of the total mass
remaining after 150Myr, we have 50 Ceres-sized bodies still
present, with perhaps 10 bodies the size of 4000 km. Since it
was probable that the size distribution of the remnant
planetesimals was shallow (Bottke et al. 2010), most of the
mass is in the large bodies, and thus we consider it very
unlikely that this mass was ground down by collisional erosion.
A quick estimate of the collisional timescale can be made

with an s =n vt 1 argument, where n is the number density of
planetesimals, v is their typical encounter velocity, and
s p= r2 is their collisional cross section. The number density

p= Dn M a m a i2 sin2 2( ), where M is the total mass of

Table 5
Same as Table 2, but for the Oligarchic Initial Conditions and a Tack at 2 au

disk Age (Myr) á ñn á ñSc á ñAMD á ñSH

0.5 4.8±0.8 73±7 0.31±0.14 (0.27) 25±7
1 4.9±0.6 72±8 0.24±0.11 (0.24) 24±3
2 3.9±0.8 53±16 2.9±3.6 (1.0) 38±7
3 3.6±0.7 48±13 9.7±8.8 (6.7) 43±10
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remnant planetesimals,Da is the width of the annulus in which
the planetesimals are situated and m is their individual mass.
We then have

p rD
=

Mvt

a a i r

3

8 sin
1. 16

2 2
( )

From our simulations we find that the typical semimajor axis of
these planetesimals is 1.5 au and D ~a 0.5 au, ~ i 20 and
using a planetesimal density of r = 3000 kg m−3 and encoun-
ter velocity ~ ~v ev 12K km s−1 we have for a planetesimal of
radius 500 km that >t 1 Gyr. This is longer than the estimate
of 56Myr of Raymond et al. (2013) because they consider a
smaller annulus and a planar problem. Thus for large
planetesimals, collisional grinding is most likely unimportant,
though future studies need to verify or deny this claim. In any
case, the amount of left-over material warrants a separate
investigation, in particular if the size distribution is shallow and
most mass is in large planetesimals. Its results will be discussed
in a companion paper.

Another topic that was not discussed in the previous sections
was the amount of mass that is placed in the asteroid belt. With
our definition of the asteroid belt region (perihelion >q 1.6 au
and aphelion <Q 4.5 au), we find that simulations with a tack
at 1.5 au place roughly 0.6% of material in the asteroid belt,
while this increases to 0.9% when the tack is at 2 au, which is
comparable to but slightly in excess of the percentage reported
by Walsh et al. (2011). The main reason our simulations with a
tack at 1.5 au have a higher amount of mass in the asteroid belt
than theirs is due to the stronger gas drag acting on
planetesimals in the beginning of the simulations because the
surface density of our disk is higher than theirs. The higher
value with the tack at 2 au is clearly the result of the weaker
sculpting of the disk by Jupiter. All of these simulations leave
us with an asteroid belt whose mass is at least an order of
magnitude higher than the current value, with the caveat that
we only used planetesimals with a size of 50 km for the
purpose of the gas drag. Larger planetesimals would have
reduced the remnant mass in the asteroid belt while a smaller
size would have increased it (Matsumura et al. 2016). It has
been suggested that chaotic diffusion over 4Gyr and giant
planet evolution deplete the belt by approximately 75% of its
mass, but then the remaining amount of mass is still
inconsistent with what is observed today (Minton & Malhotra
2010). Then again, our simulations do not take collisional
erosion into account, which could erode the belt even further
(Bottke et al. 2005).

A final topic that requires discussion is the total number of
planets. When taking each set of initial conditions as a whole,
the total number of planets is 4.4±1.3 for the equal-mass
embryo case with a tack at 1.5 au, 3.3±0.8 for the oligarchic

case with a tack at 1.5 au, 4.8±1.3 for the equal-mass embryo
case with a tack at 2 au, and 4.3±0.9 for the oligarchic case
with a tack at 2 au. All of these are consistent with four
terrestrial planets at the end. However, most of our simulations
do not produce a Mercury analog. This is a result of the initial
conditions that we have employed, and it is noteworthy that the
formation of Mercury has been mostly ignored in earlier works
(Walsh et al. 2011; Jacobson & Morbidelli 2014; Jacobson
et al. 2014; O’Brien et al. 2014; Jacobson & Walsh 2015). If
we are to ignore it too, then the total number of planets we must
produce is three. All of the models as a whole are statistically
consistent with three terrestrial planets, though some subsets
within the four models are not. Since the formation and
evolution of Mercury are currently unknown, further study is
needed to rule out whether the oligarchic model with a tack at
2 au can be made consistent with the current inner solar system.
It is possible that, by the end of our simulations, the final
system is not stable in the long-term and a very late collision
could remove another planet. This is inconsistent with the
historical evolution of the Solar System, and so we have to take
the number of planets at the end of the simulations as final.

9. CONCLUSIONS

We have investigated the dynamical formation of the
terrestrial planets in the framework of the Grand Tack scenario.
It has been claimed that the Grand Tack reproduces several
observed features of the inner Solar System that previous
models failed to do, such as the low mass of Mars and the
compositional gradient in the asteroid belt. We examined this
scenario in more detail here but applied a different disk profile,
a realistic mass–radius relationship, and took into account type
1 migration. We have stated our reasons for doing so in
Section2, and performed sensitivity tests to determine whether
any of these differences matter. The answer appears to be
“yes”: with the initial conditions and disk and migration model
that we employed, we statistically ruled out a tack at 1.5 au
because we produced an excess of Venus analogs and a deficit
of Earth analogs. We attribute this excess of Venus analogs to
our disk model because it has a higher surface density than that
of Walsh et al. (2011). Additionally, with more than 95%
confidence, the semimajor axis of the most massive planet is
inconsistent with Earth’s location, while upon visual inspection
of their results the same is not true in the simulations of
Jacobson & Morbidelli (2014). Thus, the inclusion of type 1
migration and a much higher initial disk surface density,
together with smaller radii of the planets, serve to shift the mass
distribution closer to the Sun. This calls for a more distant tack
location. We find that the model that best matches the current
architecture of the terrestrial planets has a tack at 2 au and
oligarchic initial conditions.

Table 6
Summary of the Results of the Different Sets of Simulations

Type Tack (au) Mars Architecture á ñah á ñmh tmoon Mass Left ÅM( )

Equal Mass 1.5 au ✓ ✓ ⨯ ✓ ✓ 0.05±0.03
Equal Mass 2 au ✓ ⨯ ✓ ✓ ✓ 0.05±0.04
Oligarchic 1.5 au ✓ ✓ ⨯ ✓ ✓ 0.05±0.03
Oligarchic 2 au ✓ ✓ ✓ ✓ ✓ 0.05±0.04

Note. It is clear that a tack location of 1.5 au has difficulty reproducing the current solar system; a tack at 2 au is preferred.

17

The Astrophysical Journal, 821:75 (18pp), 2016 April 20 Brasser et al.



We thank Kevin Walsh for making available to us his
version of SyMBA that incorporates the migration of the gas
giants and the gas profile, Hal Levison for indicating that we
should include a realistic mass–radius relationship, and an
anonymous reviewer for constructive comments. R.B. is
grateful for financial support from the Astrobiology Center
Project of the National Institutes of Natural Sciences (NINS)
grant number AB271017, and to the Daiwa Anglo-Japanese
Foundation for a Small Grant. R.B. and S.J.M. acknowledge
the John Templeton Foundation—Ffame Origins program in
support of CRiO. S.J.M. is grateful for support by the NASA
Exobiology Program (NNH14ZDA001N-EXO). S.C.W. is
supported by the Research Council of Norway (235058/F20
CRATER CLOCK) and through the Centres of Excellence
funding scheme, project number 223272 (CEED). Numerical
simulations were in part carried out on the PC cluster at the
Center for Computational Astrophysics, National Astronomical
Observatory of Japan.

REFERENCES

Abramov, O., Kring, D. A., & Mojzsis, S. J. 2013, ChEG, 73, 227
Abramov, O., & Mojzsis, S. J. 2016, E&PSL, in press
Albaréde, F., Ballhaus, C., Blichert-Toft, J., et al. 2013, Icar, 222, 44
Avice, G., & Marty, B. 2014, RSPTA, 372, 30260
Bitsch, B., Johansen, A., Lambrechts, M., & Morbidelli, A. 2015, A&A,

575, A28
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005, Icar, 179, 63
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. 2015, Sci, 348, 321
Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D., & Elkins-Tanton, L.

2010, Sci, 330, 1527
Brasser, R., Duncan, M. J., & Levison, H. F. 2007, Icar, 191, 413
Brasser, R., Walsh, K. J., & Nesvorný, D. 2013, MNRAS, 433, 3417
Carlson, R. W., Borg, L. E., Gaffney, A. M., & Boyet, M. 2015, Philosophical

Transactions of the Royal Society, 372, 1
Chambers, J. 2006, Icar, 180, 496
Chambers, J. E. 2001, Icar, 152, 205
Cresswell, P., & Nelson, R. P. 2008, A&A, 482, 677
D’Angelo, G., & Marzari, F. 2012, ApJ, 757, 50
Dauphas, N., & Pourmand, A. 2011, Natur, 473, 489
DeMeo, F. E., & Carry, B. 2014, Natur, 505, 629
Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, AJ, 116, 2067
Fang, J., & Margot, J.-L. 2013, ApJ, 767, 115
Guillot, T., & Hueso, R. 2006, MNRAS, 367, L47
Halliday, A. N. 2008, RSPTA, 366, 4163
Hansen, B. M. S. 2009, ApJ, 703, 1131
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Hayashi, C. 1981, PThPS, 70, 35
Izidoro, A., Haghighipour, N., Winter, O. C., & Tsuchida, M. 2014, ApJ,

782, 31

Izidoro, A., Raymond, S. N., Morbidelli, A., & Winter, O. C. 2015, MNRAS,
453, 3619

Jacobson, S. A., & Morbidelli, A. 2014, RSPTA, 372, 0174
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. 2014, Natur, 508, 84
Jacobson, S. A., & Walsh, K. J. 2015, in The Early Earth: Accretion and

Differentiation, ed. J. Badro, & M. Walter (Hoboken, NJ: Wiley), 49
Kleine, T., Palme, H., Mezger, K., & Halliday, A. N. 2005, Sci, 310, 1671
Kokubo, E., & Ida, S. 1996, Icar, 123, 180
Kokubo, E., & Ida, S. 1998, Icar, 131, 171
Laskar, J. 2008, Icar, 196, 1
Levison, H. F., Kretke, K. A., Walsh, K. J., & Bottke, W. F. 2015, PNAS, 112,

14181
Lin, D. N. C., & Papaloizou, J. 1986, ApJ, 309, 846
Marty, B. 2012, E&PSL, 313, 56
Masset, F., & Snellgrove, M. 2001, MNRAS, 320, L55
Masset, F. S., & Casoli, J. 2009, ApJ, 703, 857
Matsumura, S., Brasser, R., & Ida, S. 2016, ApJ, 818, 15
Minton, D. A., & Malhotra, R. 2010, Icar, 207, 744
Morbidelli, A., & Crida, A. 2007, Icar, 191, 158
Morbidelli, A., Lambrechts, M., Jacobson, S., & Bitsch, B. 2015, Icar,

258, 418
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, AJ,

134, 1790
Nimmo, F., & Kleine, T. 2007, Icar, 191, 497
O’Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Icar, 184, 39
O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., &

Mandell, A. M. 2014, Icar, 239, 74
Ogihara, M., & Ida, S. 2009, ApJ, 699, 824
Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293
Pierens, A., & Nelson, R. P. 2008, A&A, 482, 333
Pierens, A., & Raymond, S. N. 2011, A&A, 533, A131
Pierens, A., Raymond, S. N., Nesvorny, D., & Morbidelli, A. 2014, ApJ,

795, L11
Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icar,

203, 644
Raymond, S. N., Schlichting, H. E., Hersant, F., & Selsis, F. 2013, Icar,

226, 671
Safronov, V. S. 1969, Evolution of the Protoplanetary Cloud and Formation of

the Earth and Planets (translated from Russian; Jerusalem: Keter Publishing
House)

Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ,
669, 1279

Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257
Tanaka, H., & Ward, W. R. 2004, ApJ, 602, 388
Touboul, M., Kleine, T., Bourdon, B., Palme, H., & Wieler, R. 2007, Natur,

450, 1206
Tsiganis, K. 2015, Natur, 528, 202
Walker, R. J. 2009, ChEG, 69, 101
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., &

Mandell, A. M. 2011, Natur, 475, 206
Werner, S. C., Ody, A., & Poulet, F. 2014, Sci, 343, 1343
Wetherill, G. W. 1980, ARA&A, 18, 77
Wetherill, G. W., & Stewart, G. R. 1989, Icar, 77, 330
Zhang, H., & Zhou, J.-L. 2010, ApJ, 714, 532

18

The Astrophysical Journal, 821:75 (18pp), 2016 April 20 Brasser et al.

http://adsabs.harvard.edu/abs/2013ChEG...73..227A
http://dx.doi.org/10.1016/j.icarus.2012.10.026
http://adsabs.harvard.edu/abs/2013Icar..222...44A
http://dx.doi.org/10.1098/rsta.2013.0260
http://adsabs.harvard.edu/abs/2014RSPTA.37230260A
http://dx.doi.org/10.1051/0004-6361/201424964
http://adsabs.harvard.edu/abs/2015A&amp;A...575A..28B
http://adsabs.harvard.edu/abs/2015A&amp;A...575A..28B
http://dx.doi.org/10.1016/j.icarus.2005.05.017
http://adsabs.harvard.edu/abs/2005Icar..179...63B
http://dx.doi.org/10.1126/science.aaa0602
http://adsabs.harvard.edu/abs/2015Sci...348..321B
http://dx.doi.org/10.1126/science.1196874
http://adsabs.harvard.edu/abs/2010Sci...330.1527B
http://dx.doi.org/10.1016/j.icarus.2007.05.003
http://adsabs.harvard.edu/abs/2007Icar..191..413B
http://dx.doi.org/10.1093/mnras/stt986
http://adsabs.harvard.edu/abs/2013MNRAS.433.3417B
http://dx.doi.org/10.1016/j.icarus.2005.10.017
http://adsabs.harvard.edu/abs/2006Icar..180..496C
http://dx.doi.org/10.1006/icar.2001.6639
http://adsabs.harvard.edu/abs/2001Icar..152..205C
http://dx.doi.org/10.1051/0004-6361:20079178
http://adsabs.harvard.edu/abs/2008A&amp;A...482..677C
http://dx.doi.org/10.1088/0004-637X/757/1/50
http://adsabs.harvard.edu/abs/2012ApJ...757...50D
http://dx.doi.org/10.1038/nature10077
http://adsabs.harvard.edu/abs/2011Natur.473..489D
http://dx.doi.org/10.1038/nature12908
http://adsabs.harvard.edu/abs/2014Natur.505..629D
http://dx.doi.org/10.1086/300541
http://adsabs.harvard.edu/abs/1998AJ....116.2067D
http://dx.doi.org/10.1088/0004-637X/767/2/115
http://adsabs.harvard.edu/abs/2013ApJ...767..115F
http://dx.doi.org/10.1111/j.1745-3933.2006.00137.x
http://adsabs.harvard.edu/abs/2006MNRAS.367L..47G
http://dx.doi.org/10.1098/rsta.2008.0209
http://adsabs.harvard.edu/abs/2008RSPTA.366.4163H
http://dx.doi.org/10.1088/0004-637X/703/1/1131
http://adsabs.harvard.edu/abs/2009ApJ...703.1131H
http://dx.doi.org/10.1086/305277
http://adsabs.harvard.edu/abs/1998ApJ...495..385H
http://adsabs.harvard.edu/abs/1981PThPS..70...35H
http://dx.doi.org/10.1088/0004-637X/782/1/31
http://adsabs.harvard.edu/abs/2014ApJ...782...31I
http://adsabs.harvard.edu/abs/2014ApJ...782...31I
http://dx.doi.org/10.1093/mnras/stv1835
http://adsabs.harvard.edu/abs/2015MNRAS.453.3619I
http://adsabs.harvard.edu/abs/2015MNRAS.453.3619I
http://dx.doi.org/10.1098/rsta.2013.0174
http://dx.doi.org/10.1038/nature13172
http://adsabs.harvard.edu/abs/2014Natur.508...84J
http://adsabs.harvard.edu/abs/2015etpf.book...49J
http://dx.doi.org/10.1126/science.1118842
http://adsabs.harvard.edu/abs/2005Sci...310.1671K
http://dx.doi.org/10.1006/icar.1996.0148
http://adsabs.harvard.edu/abs/1996Icar..123..180K
http://dx.doi.org/10.1006/icar.1997.5840
http://adsabs.harvard.edu/abs/1998Icar..131..171K
http://dx.doi.org/10.1016/j.icarus.2008.02.017
http://adsabs.harvard.edu/abs/2008Icar..196....1L
http://dx.doi.org/10.1073/pnas.1513364112
http://adsabs.harvard.edu/abs/2015PNAS..11214180L
http://adsabs.harvard.edu/abs/2015PNAS..11214180L
http://dx.doi.org/10.1086/164653
http://adsabs.harvard.edu/abs/1986ApJ...309..846L
http://dx.doi.org/10.1016/j.epsl.2011.10.040
http://adsabs.harvard.edu/abs/2012E&amp;PSL.313...56M
http://dx.doi.org/10.1046/j.1365-8711.2001.04159.x
http://adsabs.harvard.edu/abs/2001MNRAS.320L..55M
http://dx.doi.org/10.1088/0004-637X/703/1/857
http://adsabs.harvard.edu/abs/2009ApJ...703..857M
http://dx.doi.org/10.3847/0004-637X/818/1/15
http://adsabs.harvard.edu/abs/2016ApJ...818...15M
http://dx.doi.org/10.1016/j.icarus.2009.12.008
http://adsabs.harvard.edu/abs/2010Icar..207..744M
http://dx.doi.org/10.1016/j.icarus.2007.04.001
http://adsabs.harvard.edu/abs/2007Icar..191..158M
http://dx.doi.org/10.1016/j.icarus.2015.06.003
http://adsabs.harvard.edu/abs/2015Icar..258..418M
http://adsabs.harvard.edu/abs/2015Icar..258..418M
http://dx.doi.org/10.1086/521705
http://adsabs.harvard.edu/abs/2007AJ....134.1790M
http://adsabs.harvard.edu/abs/2007AJ....134.1790M
http://dx.doi.org/10.1016/j.icarus.2007.05.002
http://adsabs.harvard.edu/abs/2007Icar..191..497N
http://dx.doi.org/10.1016/j.icarus.2006.04.005
http://adsabs.harvard.edu/abs/2006Icar..184...39O
http://dx.doi.org/10.1016/j.icarus.2014.05.009
http://adsabs.harvard.edu/abs/2014Icar..239...74O
http://dx.doi.org/10.1088/0004-637X/699/1/824
http://adsabs.harvard.edu/abs/2009ApJ...699..824O
http://dx.doi.org/10.1111/j.1365-2966.2010.17442.x
http://adsabs.harvard.edu/abs/2011MNRAS.410..293P
http://dx.doi.org/10.1051/0004-6361:20079062
http://adsabs.harvard.edu/abs/2008A&amp;A...482..333P
http://dx.doi.org/10.1051/0004-6361/201117451
http://adsabs.harvard.edu/abs/2011A&amp;A...533A.131P
http://dx.doi.org/10.1088/2041-8205/795/1/L11
http://adsabs.harvard.edu/abs/2014ApJ...795L..11P
http://adsabs.harvard.edu/abs/2014ApJ...795L..11P
http://dx.doi.org/10.1016/j.icarus.2009.05.016
http://adsabs.harvard.edu/abs/2009Icar..203..644R
http://adsabs.harvard.edu/abs/2009Icar..203..644R
http://dx.doi.org/10.1016/j.icarus.2013.06.019
http://adsabs.harvard.edu/abs/2013Icar..226..671R
http://adsabs.harvard.edu/abs/2013Icar..226..671R
http://dx.doi.org/10.1086/521346
http://adsabs.harvard.edu/abs/2007ApJ...669.1279S
http://adsabs.harvard.edu/abs/2007ApJ...669.1279S
http://dx.doi.org/10.1086/324713
http://adsabs.harvard.edu/abs/2002ApJ...565.1257T
http://dx.doi.org/10.1086/380992
http://adsabs.harvard.edu/abs/2004ApJ...602..388T
http://dx.doi.org/10.1038/nature06428
http://adsabs.harvard.edu/abs/2007Natur.450.1206T
http://adsabs.harvard.edu/abs/2007Natur.450.1206T
http://dx.doi.org/10.1038/nature16322
http://adsabs.harvard.edu/abs/2015Natur.528..202T
http://dx.doi.org/10.1016/j.chemer.2008.10.001
http://adsabs.harvard.edu/abs/2009ChEG...69..101W
http://dx.doi.org/10.1038/nature10201
http://adsabs.harvard.edu/abs/2011Natur.475..206W
http://dx.doi.org/10.1126/science.1247282
http://adsabs.harvard.edu/abs/2014Sci...343.1343W
http://dx.doi.org/10.1146/annurev.aa.18.090180.000453
http://adsabs.harvard.edu/abs/1980ARA&amp;A..18...77W
http://dx.doi.org/10.1016/0019-1035(89)90093-6
http://adsabs.harvard.edu/abs/1989Icar...77..330W
http://dx.doi.org/10.1088/0004-637X/714/1/532
http://adsabs.harvard.edu/abs/2010ApJ...714..532Z

	1. INTRODUCTION
	2. DEVIATIONS FROM THE ORIGINAL GRAND TACK MODEL
	2.1. Protoplanetary Disk
	2.2. Embryo Migration

	3. INITIAL CONDITIONS
	3.1. Equal Mass Embryo Initial Conditions
	3.2. Oligarchic Initial Conditions

	4. METHODOLOGY
	5. A MEASURE OF SUCCESS
	6. RESULTS: TACK AT 1.5au
	6.1. Equal Mass Embryos
	6.2. Oligarchic Embryos

	7. RESULTS: TACK AT 2au
	7.1. Equal Mass Embryos
	7.2. Oligarchic Embryos
	7.3. Summary

	8. DISCUSSION
	9. CONCLUSIONS
	REFERENCES

