1,331 research outputs found

    Perturbations in a Bouncing Brane Model

    Full text link
    The question of how perturbations evolve through a bounce in the Cyclic and Ekpyrotic models of the Universe is still a matter of ongoing debate. In this report we show that the collision between boundary branes is in most cases singular even in the full 5-D formalism, and that first order perturbation theory breaks down for at least one perturbation variable. Only in the case that the boundary branes approach each other with constant velocity shortly before the bounce, can a consistent, non singular solution be found. It is then possible to follow the perturbations explicitly until the actual collision. In this case, we find that if a scale invariant spectrum developed on the hidden brane, it will get transferred to the visible brane during the bounce.Comment: 15 pages, minor modifications, a few typos correcte

    A Radiation Bounce from the Lee-Wick Construction?

    Full text link
    It was recently realized that matter modeled by the scalar field sector of the Lee-Wick Standard Model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressure-less matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of the radiation field and its Lee-Wick partner.Comment: 11 page

    Can universe exit from phantom inflation due to gravitational back reaction?

    Get PDF
    The effects of the gravitational back reaction of cosmological perturbations are investigated in a phantom inflation model. The effective energy-momentum tensor of the gravitational back reaction of cosmological perturbations whose wavelengths are larger than the Hubble radius is calculated. Our results show that the effects of gravitational back reaction will counteract that of the phantom energy. It is demonstrated in a chaotic phantom inflation model that if the phantom field at the end of inflation is larger than a critical value determined by the necessary e-folds, the phantom inflation phase might be terminated by the gravitational back reaction.Comment: 9 pages, Revtex4, to appear in JCA

    Dynamical Relaxation of the Cosmological Constant and Matter Creation in the Universe

    Full text link
    In this Letter we discuss the issues of the graceful exit from inflation and of matter creation in the context of a recent scenario \cite{RHBrev} in which the back-reaction of long wavelength cosmological perturbations induces a negative contribution to the cosmological constant and leads to a dynamical relaxation of the bare cosmological constant. The initially large cosmological constant gives rise to primordial inflation, during which cosmological perturbations are stretched beyond the Hubble radius. The cumulative effect of the long wavelength fluctuations back-reacts on the background geometry in a form which corresponds to the addition of a negative effective cosmological constant to the energy-momentum tensor. In the absence of an effective scalar field driving inflation, whose decay can reheat the Universe, the challenge is to find a mechanism which produces matter at the end of the relaxation process. In this Letter, we point out that the decay of a condensate representing the order parameter for a ``flat'' direction in the field theory moduli space can naturally provide a matter generation mechanism. The order parameter is displaced from its vacuum value by thermal or quantum fluctuations, it is frozen until the Hubble constant drops to a sufficiently low value, and then begins to oscillate about its ground state. During the period of oscillation it can decay into Standard Model particles similar to how the inflaton decays in scalar-field-driven models of inflation.Comment: 6 page

    On the Instability of the Lee-Wick Bounce

    Full text link
    It was recently realized that a model constructed from a Lee-Wick type scalar field theory yields, at the level of homogeneous and isotropic background cosmology, a bouncing cosmology. However, bouncing cosmologies induced by pressure-less matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add radiation coupled to the Lee-Wick scalar field. This coupling in principle would allow the energy to flow from radiation to matter, thus providing a drain for the radiation energy. However, we find that it takes an extremely unlikely fine tuning of the initial phases of the field configurations for a sufficient amount of radiative energy to flow into matter. For general initial conditions, the evolution leads to a singularity rather than a smooth bounce.Comment: 17 pages, 9 figure

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    Dilaton stabilization by massive fermion matter

    Full text link
    The study started in a former work about the Dilaton mean field stabilization thanks to the effective potential generated by the existence of massive fermions, is here extended. Three loop corrections are evaluated in addition to the previously calculated two loop terms. The results indicate that the Dilaton vacuum field tend to be fixed at a high value close to the Planck scale, in accordance with the need for predicting Einstein gravity from string theory. The mass of the Dilaton is evaluated to be also a high value close to the Planck mass, which implies the absence of Dilaton scalar signals in modern cosmological observations. These properties arise when the fermion mass is chosen to be either at a lower bound corresponding to the top quark mass, or alternatively, at a very much higher value assumed to be in the grand unification energy range. One of the three 3-loop terms is exactly evaluated in terms of Master integrals. The other two graphs are however evaluated in their leading logarithm correction in the perturbative expansion. The calculation of the non leading logarithmic contribution and the inclusion of higher loops terms could made more precise the numerical estimates of the vacuum field value and masses, but seemingly are expected not to change the qualitative behavior obtained. The validity of the here employed Yukawa model approximation is argued for small value of the fermion masses with respect to the Planck one. A correction to the two loop calculation done in the previous work is here underlined.Comment: 18 pages, 5 figures, the study was extended and corrections on the former calculations and redaction were done. The paper had been accepted for publication in "Astrophysics and Space Science

    On the new string theory inspired mechanism of generation of cosmological perturbations

    Get PDF
    Recently a non-inflationary mechanism of generation of scale-free cosmological perturbations of metric was proposed by Brandenberger, Nayeri, and Vafa in the context of the string gas cosmology. We discuss various problems of their model and argue that the cosmological perturbations of metric produced in this model have blue spectrum with a spectral index n = 5, which strongly disagrees with observations. We conclude that this model in its present form is not a viable alternative to inflationary cosmology.Comment: 11 pages, 1 figur
    • …
    corecore