1,752 research outputs found

    Quantum Zeno Effect Explains Magnetic-Sensitive Radical-Ion-Pair Reactions

    Full text link
    Chemical reactions involving radical-ion pairs are ubiquitous in biology, since not only are they at the basis of the photosynthetic reaction chain, but are also assumed to underlie the biochemical magnetic compass used by avian species for navigation. Recent experiments with magnetic-sensitive radical-ion pair reactions provided strong evidence for the radical-ion-pair magnetoreception mechanism, verifying the expected magnetic sensitivities and chemical product yield changes. It is here shown that the theoretical description of radical-ion-pair reactions used since the 70's cannot explain the observed data, because it is based on phenomenological equations masking quantum coherence effects. The fundamental density matrix equation derived here from basic quantum measurement theory considerations naturally incorporates the quantum Zeno effect and readily explains recent experimental observations on low- and high-magnetic-field radical-ion-pair reactions.Comment: 10 pages, 5 figure

    Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers

    Full text link

    Auditing Predictive Models for Intersectional Biases

    Full text link
    Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we propose Conditional Bias Scan (CBS), a flexible auditing framework for detecting intersectional biases in classification models. CBS identifies the subgroup for which there is the most significant bias against the protected class, as compared to the equivalent subgroup in the non-protected class, and can incorporate multiple commonly used fairness definitions for both probabilistic and binarized predictions. We show that this methodology can detect previously unidentified intersectional and contextual biases in the COMPAS pre-trial risk assessment tool and has higher bias detection power compared to similar methods that audit for subgroup fairness.Comment: 29 pages, 7 figure

    Tissue-specific regulatory elements in mammalian promoters

    Get PDF
    Transcription factor-binding sites and the cis-regulatory modules they compose are central determinants of gene expression. We previously showed that binding site motifs and modules in proximal promoters can be used to predict a significant portion of mammalian tissue-specific transcription. Here, we report on a systematic analysis of promoters controlling tissue-specific expression in heart, kidney, liver, pancreas, skeletal muscle, testis and CD4 T cells, for both human and mouse. We integrated multiple sources of expression data to compile sets of transcripts with strong evidence for tissue-specific regulation. The analysis of the promoters corresponding to these sets produced a catalog of predicted tissue-specific motifs and modules, and cis-regulatory elements. Predicted regulatory interactions are supported by statistical evidence, and provide a foundation for targeted experiments that will improve our understanding of tissue-specific regulatory networks. In a broader context, methods used to construct the catalog provide a model for the analysis of genomic regions that regulate differentially expressed genes
    • ā€¦
    corecore