870 research outputs found

    Phosphoinositide hydrolysis mediated by H1 receptors in autoimmune myocarditis mice

    Get PDF
    Stimulation of phosphoinositide hydrolysis in myocardium from autoimmune myocarditis mice by ThEA and histamine was assayed. Myocardium from autoimmune heart, but not the normal forms, specifically increased phosphoinositide turnover in the presence of histaminergic agonists. This increment was blocked by a specific H1 antagonist mepyramine and to the same extent by the phospholipase C inhibitor NCDC. By using a binding assay H1 histaminergic receptors were detected in autoimmune heart membrane preparations, but this was not observed in normal heart. These data suggest that autoimmune myocardium expressed a functional H1 receptor that could involve a distinctive mechanism operating in the disease

    Museum Websites of the First Wave: The rise of the virtual museum

    Get PDF
    In this paper, we analyse trends of the first wave of museum websites (from the 1990s to the early 2000s) to understand how the characteristics of the Internet (specifically the World Wide Web), of museum staff, and museum audiences shaped the adoption of technology and new forms of participation and what they can tell us about engagement for museums of the future. The early development of online museum resources parallels the development of the EVA conference, which was establishing itself at a similar time

    Cholinoceptor Activation Subserving the Effects of Interferon Gamma on the Contractility of Rat Ileum

    Get PDF
    Recombinant rat interferon γ stimulated the contractility of isolated rat ileum at doses of 4–12 units/ml. Muscarinic cholinoceptors were involved, as treatment of the tissue with atropine prevented the contractile response of the ileum. Furthermore, interferon γ increased the affinity of carbachol for the cholinoceptors and did not change its maximum effect. Neurogenic pathways were also involved since pretreatment of ileum with hexamethonium, hemicholinium or tetrodotoxin impaired the contractile effect of interferon γ. In contrast to the action of exogenous carbachol, the effects of interferon γ are indirect. They appear to involve a G protein regulating phosphoinositide turnover and cytoskeletal structures since they could not be induced in ileum strips that were pretreated with pertussis toxin, phospholipase C inhibitors (2-nitro-carboxyphenyl, NN-diphenyl carbamate and neomycin), cytochalasine B or colchicine

    Homogeneous and Narrow Bandwidth of Spike Initiation in Rat L1 Cortical Interneurons

    Get PDF
    The cortical layer 1 (L1) contains a population of GABAergic interneurons, considered a key component of information integration, processing, and relaying in neocortical networks. In fact, L1 interneurons combine top\u2013down information with feed-forward sensory inputs in layer 2/3 and 5 pyramidal cells (PCs), while filtering their incoming signals. Despite the importance of L1 for network emerging phenomena, little is known on the dynamics of the spike initiation and the encoding properties of its neurons. Using acute brain tissue slices from the rat neocortex, combined with the analysis of an existing database of model neurons, we investigated the dynamical transfer properties of these cells by sampling an entire population of known \u201celectrical classes\u201d and comparing experiments and model predictions. We found the bandwidth of spike initiation to be significantly narrower than in L2/3 and 5 PCs, with values below 100 cycle/s, but without significant heterogeneity in the cell response properties across distinct electrical types. The upper limit of the neuronal bandwidth was significantly correlated to the mean firing rate, as anticipated from theoretical studies but not reported for PCs. At high spectral frequencies, the magnitude of the neuronal response attenuated as a power-law, with an exponent significantly smaller than what was reported for pyramidal neurons and reminiscent of the dynamics of a \u201cleaky\u201d integrate-and-fire model of spike initiation. Finally, most of our in vitro results matched quantitatively the numerical simulations of the models as a further contribution to independently validate the models against novel experimental data

    A renormalization-group analysis of the interacting resonant level model at finite bias: Generic analytic study of static properties and quench dynamics

    Full text link
    Using a real-time renormalization group method we study the minimal model of a quantum dot dominated by charge fluctuations, the two-lead interacting resonant level model, at finite bias voltage. We develop a set of RG equations to treat the case of weak and strong charge fluctuations, together with the determination of power-law exponents up to second order in the Coulomb interaction. We derive analytic expressions for the charge susceptibility, the steady-state current and the conductance in the situation of arbitrary system parameters, in particular away from the particle-hole symmetric point and for asymmetric Coulomb interactions. In the generic asymmetric situation we find that power laws can be observed for the current only as function of the level position (gate voltage) but not as function of the voltage. Furthermore, we study the quench dynamics after a sudden switch-on of the level-lead couplings. The time evolution of the dot occupation and current is governed by exponential relaxation accompanied by voltage-dependent oscillations and characteristic algebraic decay.Comment: 24 pages, 13 figures; revised versio

    Assisted hopping and interaction effects in impurity models

    Full text link
    We study, using Numerical Renormalization Group methods, the generalization of the Anderson impurity model where the hopping depends on the filling of the impurity. We show that the model, for sufficiently large values of the assisted hopping term, shows a regime where local pairing correlations are enhanced. These correlations involve pairs fluctuating between on site and nearest neighbor positions

    Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study

    Full text link
    We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson's numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi-surface), (ii) a Stoner splitting in the bands (governed by the band edges) and (iii) an arbitrary shape of the leads density of states. For a generic lead density of states the quantum dot favors being occupied by a particular spin-species due to exchange interaction with ferromagnetic leads leading to a suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry restoring the Kondo effect. We study both the gate-voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in presence of leads with an energy dependent density of states is not only possible by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.Comment: 18 pages, 18 figures, accepted for publication in PR

    Analysing the distance decay of community similarity in river networks using Bayesian methods

    Get PDF
    The distance decay of community similarity (DDCS) is a pattern that is widely observed in terrestrial and aquatic environments. Niche-based theories argue that species are sorted in space according to their ability to adapt to new environmental conditions. The ecological neutral theory argues that community similarity decays due to ecological drift. The continuum hypothesis provides an intermediate perspective between niche-based theories and the neutral theory, arguing that niche and neutral factors are at the opposite ends of a continuum that ranges from competitive to stochastic exclusion. We assessed the association between niche-based and neutral factors and changes in community similarity measured by Sorensen’s index in riparian plant communities. We assessed the importance of neutral processes using network distances and flow connection and of niche-based processes using Strahler order differences and precipitation differences. We used a hierarchical Bayesian approach to determine which perspective is best supported by the results. We used dataset composed of 338 vegetation censuses from eleven river basins in continental Portugal. We observed that changes in Sorensen indices were associated with network distance, flow connection, Strahler order difference and precipitation difference but to different degrees. The results suggest that community similarity changes are associated with environmental and neutral factors, supporting the continuum hypothesisinfo:eu-repo/semantics/publishedVersio
    • 

    corecore