778 research outputs found

    Investigation of the XCAT phantom as a validation tool in cardiac MRI tracking algorithms.

    Get PDF
    PURPOSE: To describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could influence MRI tracking algorithm design. METHODS: Twenty virtual patients were subjected to simulated MRI scans that closely model the proposed real-world scenario to allow verification of the tracking technique's algorithm. The generated phantoms provide ground-truth motions which were compared to the target motions output from our tracking algorithm. The patient-specific tracking error, ep, was the 3D difference (vector length) between the ground-truth and algorithm trajectories. The tracking errors of two combinations of new tracking algorithm functions that were anticipated to improve tracking accuracy were studied. Additionally, the correlation of key physiological parameters with tracking accuracy was investigated. RESULTS: Our original cardiac tracking algorithm resulted in a mean tracking error of 3.7 ± 0.6 mm over all virtual patients. The two combinations of tracking functions demonstrated comparable mean tracking errors however indicating that the optimal tracking algorithm may be patient-specific. CONCLUSIONS: Current and future MRI tracking strategies are likely to benefit from this virtual validation method since no time-resolved 4D ground-truth signal can currently be derived from purely image-based studies

    Bayesian Inference Semantics: A Modelling System and A Test Suite

    Get PDF
    We present BIS, a Bayesian Inference Seman- tics, for probabilistic reasoning in natural lan- guage. The current system is based on the framework of Bernardy et al. (2018), but de- parts from it in important respects. BIS makes use of Bayesian learning for inferring a hy- pothesis from premises. This involves estimat- ing the probability of the hypothesis, given the data supplied by the premises of an argument. It uses a syntactic parser to generate typed syn- tactic structures that serve as input to a model generation system. Sentences are interpreted compositionally to probabilistic programs, and the corresponding truth values are estimated using sampling methods. BIS successfully deals with various probabilistic semantic phe- nomena, including frequency adverbs, gener- alised quantifiers, generics, and vague predi- cates. It performs well on a number of interest- ing probabilistic reasoning tasks. It also sus- tains most classically valid inferences (instan- tiation, de Morgan’s laws, etc.). To test BIS we have built an experimental test suite with examples of a range of probabilistic and clas- sical inference patterns

    Malignant hypertension and acute aortic dissection associated with caffeine-based ephedra-free dietary supplements: a case report

    Get PDF
    The use of weight loss dietary supplements is prevalent in the United States, and over the past decade, there has been tremendous growth of the use of these products. It is well documented that ephedra-based products are associated with various cardiovascular adverse effects. With new restrictions placed on such products, companies are now manufacturing caffeine-based ephedra-free herbal supplements. We present the case of 36-year old, previously healthy female who developed malignant hypertension and aortic dissection while taking various caffeine-based dietary supplements. Given the lack of research studies in regards to their safety and efficacy, judicious care should be taken with the use of dietary supplements, including those designated as ephedra-free

    Nanohybrid biosensor based on mussel-inspired electro-cross-linking of tannic acid capped gold nanoparticles and enzymes

    Get PDF
    Complementary tools to classical analytical methods, enzymatic biosensors are widely applied in medical diagnosis due to their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Among the different protocols of enzyme immobilization, the covalent binding and cross-linking of enzymes ensure the great stability of the developed biosensor. Obtained manually by drop-casting using a specific cross-linker, this immobilization process is not suitable for the specific functionalization of a single electrode out of a microelectrode array. In the present work, we developed a nanohybrid enzymatic biosensor with high sensitivity by a mussel-inspired electro-cross-linking process using a cheap and abundant natural molecule (tannic acid, TA), gold salt, and native enzymes. Based on the use of a cheap natural compound and gold salt, this electro-cross-linking process based on catechol/amine reaction (i) is versatile, likely to be applied on any kind of enzymes, (ii) does not require the synthesis of a specific cross-linker, (ii) gives enzymatic biosensors with high and very stable sensitivity over two weeks upon storage at room temperature and (iv) is temporally and spatially controlled, allowing the specific functionalization of a single electrode out of a microelectrode array. Besides the development of microbiosensors, this process can also be used for the design of enzymatic biofuel cells

    Scientific rewards and conflicts of ethical choices in human subjects research.

    Get PDF

    Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery.

    Get PDF
    Radiosurgery to the pulmonary vein antrum in the left atrium (LA) has recently been proposed for non-invasive treatment of atrial fibrillation (AF). Precise real-time target localization during treatment is necessary due to complex respiratory and cardiac motion and high radiation doses. To determine the 3D position of the LA for motion compensation during radiosurgery, a tracking method based on orthogonal real-time MRI planes was developed for AF treatments with an MRI-guided radiotherapy system. Four healthy volunteers underwent cardiac MRI of the LA. Contractile motion was quantified on 3D LA models derived from 4D scans with 10 phases acquired in end-exhalation. Three localization strategies were developed and tested retrospectively on 2D real-time scans (sagittal, temporal resolution 100 ms, free breathing). The best-performing method was then used to measure 3D target positions in 2D-2D orthogonal planes (sagittal-coronal, temporal resolution 200-252 ms, free breathing) in 20 configurations of a digital phantom and in the volunteer data. The 3D target localization accuracy was quantified in the phantom and qualitatively assessed in the real data. Mean cardiac contraction was  ⩽  3.9 mm between maximum dilation and contraction but anisotropic. A template matching approach with two distinct template phases and ECG-based selection yielded the highest 2D accuracy of 1.2 mm. 3D target localization showed a mean error of 3.2 mm in the customized digital phantoms. Our algorithms were successfully applied to the 2D-2D volunteer data in which we measured a mean 3D LA motion extent of 16.5 mm (SI), 5.8 mm (AP) and 3.1 mm (LR). Real-time target localization on orthogonal MRI planes was successfully implemented for highly deformable targets treated in cardiac radiosurgery. The developed method measures target shifts caused by respiration and cardiac contraction. If the detected motion can be compensated accordingly, an MRI-guided radiotherapy system could potentially enable completely non-invasive treatment of AF

    From coinductive proofs to exact real arithmetic: theory and applications

    Full text link
    Based on a new coinductive characterization of continuous functions we extract certified programs for exact real number computation from constructive proofs. The extracted programs construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. We discuss several examples including the extraction of programs for polynomials up to degree two and the definite integral of continuous maps
    • …
    corecore