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AP anterior posterior 

DICOM Digital Imaging and Communications in Medicine 

ECG electrocardiogram 

FLASH fast low-angle shot 

LA left atrium 

LR left right 

MRI magnetic resonance imaging 

MRI-linac MRI linear accelerator 

Sis uperior inferior  
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XCAT 4D digital extended cardio torso 
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To describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio 

torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking 

will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In 

addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could 

influence MRI tracking algorithm design. 

Methods 

Twenty virtual patients were subjected to simulated MRI scans that closely model the proposed real-world 

scenario to allow verification of the tracking technique’s algorithm. The generated phantoms provide ground-

truth motions which were compared to the target motions output from our tracking algorithm. The patient-

specific tracking error, ep, was the 3D difference (vector length) between the ground-truth and algorithm 

trajectories. The tracking errors of two combinations of new tracking algorithm functions that were anticipated 

to improve tracking accuracy were studied. Additionally, the correlation of key physiological parameters with 

tracking accuracy was investigated. 

Results 

Our original cardiac tracking algorithm resulted in a mean tracking error of 3.7 ± 0.6 mm over all virtual 

patients. The two combinations of tracking functions demonstrated comparable mean tracking errors however 

indicating that the optimal tracking algorithm may be patient-specific. 

Conclusions 

Current and future MRI tracking strategies are likely to benefit from this virtual validation method since no 

time-resolved 4D ground-truth signal can currently be derived from purely image-based studies. 

 

 

 

 

  



1. Introduction 

Magnetic resonance imaging (MRI)-based tracking strategies for the use in emerging MRI-guided radiotherapy 

systems have demonstrated the ability to precisely localize and follow organ and tumor position in real-time 

scenarios [1,2]. Ideally, these tracking applications would utilize MRI sequences that can acquire time-resolved 

target volumes in real-time (4D). However, this is often restricted due to the complexities of 4D-MRI [3]. A 

number of recent studies utilize real-time interleaved orthogonal 2D cine-MRI slices [4-7] to provide real-time 

information about the target position in an effort to compensate for the lack of real 4D MRI data. Template 

matching [8, 9] is a common localization technique where a previously acquired volume-of-interest is matched 

to a target image, in this case fast acquired 2D MRI planes. Other localization strategies utilizing orthogonal 

MRI focus on automatic feature extraction for motion prediction [10,11]. 

 

A recent study by Ipsen et al. [12] suggested that a non-invasive treatment of atrial fibrillation (AF), the most 

common cardiac arrhythmia with millions of patients worldwide [13], could be facilitated by using an MRI 

linear accelerator (MRI-linac) with real-time image guidance. Despite the spatial and temporal limitations of 

4D-MRI for this purpose, a guidance method incorporating a cardiac tracking algorithm was developed. Similar 

to previous approaches [2], [8] the target, i.e. the left atrium (LA), and its 3D position during the proposed 

radiosurgery is detected through template matching of a pre-treatment target volume to orthogonal real-time 

planes [14]. Orthogonal real-time planes are used in an effort to provide adequate positional information in all 

anatomical planes (i.e. sagittal, coronal, axial). The temporal acquisition times of the real-time planes are more 

appropriate than that of complete 3D MRI volumes when tracking complex cardiac and respiratory motion. The 

template matching calculates similarity between the target volume image and the real-time planes to assign 

‘best-match’ 3D positions during the proposed treatment. To account for the rapid target deformations caused 

by the heartbeat, an electrocardiogram (ECG) surrogate and a multi-phase template were incorporated into the 

method. The ECG signal determines which pre-treatment template will be used in the matching process. 

 

New tracking strategies, such as our cardiac tracking algorithm, could directly improve treatment quality due to 

their ability to visualize internal moving organs in real-time with superior soft-tissue contrast and without using 

ionizing radiation. However, in a clinical scenario the economic and time-related burdens on specialists, 

patients and departments do not always allow rigorous testing of every new method on real patient data. It 

would be beneficial to assess the accuracy of a specific tracking technique and investigate the influence of 

different anatomical parameters on the approach before moving towards clinical implementation and patient 

studies. This is particularly relevant in developing MRI integrated radiotherapy units [15,16] where a number of 

image-guided treatment scenarios have been proposed [7, 17]. Physical phantoms could be an alternative but are 

restricted in their modeling of realistic patient physiology, especially reproducible deformation, and fabrication 

cost. The previously described lack of real-time volumetric MRI data increases the challenge of validating the 

accuracy of MRI tracking strategies in general since a time-resolved ground-truth can merely be approximated. 

 

Digital phantoms allow simulation of realistic patient anatomy and physiology. They also provide a desirable 

tool in exploring and developing novel image interpretations studies because of the known and quantifiable 4D 

phantom anatomy. A number of digital phantoms have been developed for use in medical imaging analysis [18-

22]. Organ-specific digital phantoms [21, 22] are generally designed for a specific image analysis investigation, 

restricting their use as a tool in tracking validations of multi-organ systems. In contrast, the 4D digital extended 

cardio torso (XCAT) phantom [19, 20] has the ability to model a wide range of patient anatomies, provides a 

realistic interaction of multiple organs and a multitude of simulated imaging modalities. These design features 

of the XCAT phantom, described in detail in the literature [19, 20], make it a suitable validation tool for various 

tracking applications. The XCAT phantom has been used periodically in experimental investigations, e.g. to 

simulate realistic cardiac MRI on a virtual patient cohort of 40 digital phantoms [23], for the modeling of 

regional heart defects caused by ischemia with incorporation of a finite-element model [24] and in respiration-

focused modeling applications. The respiration-focused modeling applications include the verification of 



reproducible patient-specific diaphragm and chest motion traces for lung cancer radiotherapy [25], the 

validation of novel 4D-MRI techniques which image respiratory motion [26] and an analysis of audiovisual 

biofeedback and gating on thoracic-abdominal 4D computed tomography [27]. 

 

In Ipsen et al. [14] the XCAT phantom was first utilized to validate the MRI cardiac tracking algorithm by 

comparing the developed method’s target trajectories with a ground-truth trajectory output from the XCAT 

phantom. Here, we now describe in detail the implementation of the XCAT phantom to validate and assess our 

cardiac tracking techniques and show how this quantifiable measure of tracking accuracy and patient-specific 

physiology could influence and improve MRI tracking algorithm design. 

 

2. Methods and materials 

2.1. Virtual patient dataset 

To cover a range of different patient anatomies we generated a virtual dataset of 20 patients by using different 

XCAT phantom parameter sets and utilized the digital phantom’s ability to control anatomical and 

physiological parameters, in addition to its MRI simulation capabilities. Six specific anatomical parameters of 

the XCAT’s initialization file were anticipated to strongly influence algorithmic tracking robustness and were 

varied across the 20 virtual patients. These were LA volume, heart rate, respiratory rate and cardiac respiratory 

motion broken into its three constituent components – superior inferior (SI), anterior posterior (AP) and left 

right (LR). The three motion-related parameters (heart rate, respiratory rate and respiratory motion) can be 

manipulated directly in the XCAT parameter initialization file while the LA volume was controlled indirectly 

by either scaling the entire phantom or scaling the heart only. Both scaling factors were varied for all 20 virtual 

patients in the XCAT parameter initialization file 

 

To date, only healthy volunteers have been included in our cardiac tracking research [12, 14]. For 

comparability, the virtual dataset was designed to replicate this digitally. Anatomical parameters of the virtual 

patients were randomly generated based on distributions (mean and sample standard deviation) from our 

previous studies [12, 14], and taken from literature when appropriate data was unavailable. The reference values 

and sources are shown in Table 1. The individual XCAT patients’ parameters are shown in Table 2. 

2.2. Simulated MRI scans 

Virtual phantoms were generated to validate our cardiac MRI tracking algorithm using the XCAT's activity 

mode [20]. Pixel intensities of organs and tissues were assigned values based on the image data acquired using a 

fast steady-state free precession (TrueFISP) sequence from our previous study [14]. The conversion of XCAT 

raw binary files into Digital Imaging and Communications in Medicine (DICOM) format and the subsequent 

validation of the tracking algorithm were conducted with in-house developed software (MATLAB 2014b 

version 8.4, The MathWorks Inc.). Assessment of our real-time LA localization strategy based on template 

matching with MRI required the generation of three phantoms for each of the 20 virtual patients, shown in Fig. 

1. 

2.3. Phantoms for template generation 

Two static phantoms (i.e. 3D) were generated at end-exhale for atrial systole and end-diastole to simulate the 

dual-phase template combination of our previous work [14]. The respiratory motion component was eliminated 

to mimic image acquisition during breath-hold. The phantoms were generated with regular (i.e. non-arrhythmic) 

anatomical parameters and with isotropic voxels of 1.3 mm to match the in-plane pixel size of the TrueFISP 

breath-hold scans. Partial volume artifacts were introduced by combining four adjacent sagittal slices and 

averaging their voxel intensities. This combination took place successively across the lateral span of the 

phantom. These combined slices more accurately represented the real-world MRI slice thickness (i.e. 5.2 mm) 

based on previous experiences. The simulated 2D MRI scan parameters are shown in Table 3. A 3D template 



volume was created by delineating the desired target structure (LA) in each 2D slice that contained the 

anatomical structure. By definition, the XCAT phantom produces homogeneous voxel values for each specified 

organ/region. The homogeneous voxel value, or so-called ‘activity unit’ for the LA was assigned in the XCAT’s 

parameter initialization file and was non-identical to other organs/regions We ran a simple binary algorithm 

over the phantom for template generation to isolate those voxels associated with the LA’s activity unit. By 

performing an automatic pixel thresholding of the intended LA target, the final 3D volume template was 

extracted. This method was validated by comparing the Dice similarity coefficient (DSC) [30] of the template 

volume and the LA of the phantom. As expected, there was perfect overlap (i.e. DSC = 1). The automatic nature 

of the segmentation as opposed to a manual delineation is advantageous in a validation method for tracking 

accuracy since no areas of the LA target are missed (template LA dimensions are identical to the XCAT’s raw 

data LA dimensions) and the undesired inter-/intra-user variability is removed. This process was repeated on 

both atrial phase phantoms. 

2.4. Real-time image phantom 

In the cardiac tracking algorithm, the 3D target templates are being matched to orthogonal 2D real-time planes. 

A phantom was generated using the same anatomical parameters as for the phantoms used for the 3D target 

volume generation. However, this dynamic phantom (i.e. 4D) included free breathing motion. The real-time 

images were extracted at specified time intervals throughout the 4D phantom. The interleaved real-time 

acquisition scheme was simulated by extracting three slices centered about the LA at 200 ms intervals for both 

orthogonal orientations (sagittal and coronal) from the dynamic phantom. The phantom was generated with 

isotropic voxels of 2.0 mm to match the in-plane pixel size of the TrueFISP 2D-2D scans. The real-time scan 

parameters of the simulated sequence are shown in Table 3. 

 

Partial volume artifacts were included, with sagittal and coronal real-time planes being the mean pixel intensity 

of the central and two adjacent slices (i.e. the three extracted slices) to give a slice thickness representative of 

the real-world workflow (i.e. 6 mm). Furthermore, Gaussian noise was added in the real-time scans [31]. The 

power of the noise was estimated from the standard deviation of the pixel intensity of a region with no signal 

from the real-time images of our previous study [14]. Gaussian noise was not added in the phantoms for 

template generation due to its incompatibility with automatic delineation. Fig. 2 shows a volunteer scan from 

our previous cardiac tracking study [14] with simulated sagittal real-time planes using the XCAT phantom 

exclusive and inclusive of partial volume and noise artifacts. 

2.5. Validation of the original and extended tracking algorithms 

Initially, we tracked the LA target in all generated virtual phantoms (n = 20) using the original real-time 

tracking algorithm [14] which outputs target motion trajectories in three anatomical axes (SI, AP, LR). Target 

motion is inferred from the volumetric center coordinate of the template’s bounding box. 

 

The ground-truth target trajectory was calculated in each real-time frame for the virtual phantom as the LA’s 

bounding box center coordinate. The LA volume was isolated with voxel intensity thresholding, visualized in 

Fig. 3. An individual patient’s tracking error ep was calculated as the mean of the 3D vectors of the difference 

between the matched position (Mx,My,Mz) and ground truth position (Gx,Gy,Gz) for each time frame t, over 

all time frames T: 
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For P virtual patients, the mean of all patients’ individual tracking errors e provided an overall metric to assess 

the tracking accuracy of the original and extended algorithms: 
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2.6. Extension of the tracking algorithm 

The quantitative error measure facilitated iterative development of the MRI tracking algorithm in an effort to 

increase the tracking accuracy. Three new tracking functionalities were implemented into the tracking algorithm 

with inter-functional compatibility included in their design, where appropriate. An all positions (APS) function 

iteratively passed each segmented plane of the template volume over the 2D real-time plane in an effort to find 

a best match location. In comparison, the original tracking method followed an approach where the current 2D 

match plane of the template is selected from the last position (LP) best match recorded on an orthogonal plane 

[14], therefore not searching the entire template volume. A bordered template (BT) function allowed a user 

definable number of blank voxels void of target volume but containing the adjacent anatomy to the outside of 

the 3D template volume. In an effort to increase tracking robustness, a dynamic search (DS) function was 

implemented where successive matching locations could only be located within a user defined distance, guided 

by observed and known LA motion trajectories [32]. Two specific combinations of the tracking algorithm’s new 

functions and that were anticipated to improve tracking accuracy were tested on the 20 virtual patients. 

Combination 1 incorporated the LP, BT and DS functions while combination 2 incorporated the APS, BT and 

DS functions. A patient-specific tracking accuracy was recorded for each combination. 

 

2.7. Spatial resolution manipulation and artifact reduction 

To test if a reduction in through-plane slice thickness and artifact reduction would lead to improved tracking 

accuracy the entire target volume procedure was repeated with isotropic voxels of 2 mm for the respective 2D 

images, however with the removal of partial volume effects. The isotropic voxels resulted in a decrease of 

spatial resolution detail from 1.3 mm to 2 mm for the in-plane pixels of cardiac template images. The flexibility 

of our tracking algorithm allowed original and spatially manipulated images to be used interchangeably. 

 

2.8. Tracking error correlation with physiological parameters 

For the original tracking algorithm, Pearson correlation coefficients were conducted between the individual 

tracking errors and six physiological parameters: LA volume, heart rate, respiratory rate and cardiac respiratory 

motion broken into its three constituent components (SI, AP, LR). The p-values for the Pearson correlation 

coefficients were calculated using a Student’s t-distribution. This study was the first to investigate whether 

variation of anatomical parameters correlated significantly with tracking error and as such, p < .008 was 

considered statistically significant after a Bonferroni correction (from α = 0.05). A sample size of n = 13 virtual 

patients was sufficient at the 0.80 level of power. 

 

3. Results 

3.1. Tracking accuracy of the original and extended tracking algorithms 

The 3D tracking error of the original tracking algorithm over all 20 virtual patients was 3.7 ± 0.6 mm 

(mean ± std). 

 

Tracking errors across the 20 virtual patients for the two new function combinations and spatial manipulation 

test are shown in Fig. 4. While the tracking accuracy for the 20 virtual patients remained relatively unchanged 

by applying different combinations of extensions of the original tracking algorithm, an individual patient’s 

tracking error did not necessarily follow this trend, which reflected in the patient-specific tracking errors in Fig. 

4. The optimal tracking function combination was therefore patient-specific as was the lowest achievable 



tracking error. However, statistical comparison between the four different tracking functions did not result in 

significant differences. 

Fig. 5 shows representative comparisons between ground-truth patient trajectories and the output of the original 

tracking algorithm for a best, average and worst case tracking performance. The high frequency components in 

the ground-truth directions are caused by the periodic cardiac contraction while the low frequency components 

are due to the respiratory motion during real-time acquisition. It can be seen that the tracking algorithm follows 

the LA motion accurately most of the time. Large-magnitude respiratory motion was detected robustly. The 

rapid contractile motion component appears to be more difficult to track and some outliers and non-matches 

occur. Relative to respiratory motion magnitude, large contraction motion magnitudes in both the AP and LR 

planes reduce tracking robustness, as illustrated in Fig. 5 (c). In Fig. 5(a), only the LR motion exhibits this 

property and the tracking robustness is not compromised. These individual patients’ physiological parameters 

and tracking accuracy are shown in Table 4. Relative to the other virtual patients, a best case generally 

displayed low magnitude and frequency of respiratory and cardiac cycles while a worst case exhibited higher 

magnitude and frequency. 

3.2. Anatomical parameter analysis 

For the six varied anatomical parameters tested here, none correlated significantly with tracking accuracy as 

shown in Table 5. A faster heart rate was not definitively associated with a decrease in tracking accuracy. An 

increase in LA volume did not correspond to an improved tracking accuracy, contrary to what was anticipated 

when using a larger template registration area. Increases in respiratory rate and the cardiac respiratory motion’s 

three constituent components; SI, AP and LR did not result in a significant reduction of the tracking accuracy. 

4. Discussion 

Using the virtual XCAT patients our original tracking algorithm resulted in a mean 3D tracking error of 

3.7 ± 0.6 mm. To be consistent with the error quantification method of other tracking studies [2], [10], the 

individual patient error metric was modified in this study. Instead of the previously utilized 3D vector of the 

mean differences between the tracking algorithm and ground-truth anatomical plane trajectories in each 

anatomical plane [14], the mean of the 3D differences (vector lengths) for each real-time match was calculated. 

The change in metric changed the mean tracking accuracy over all virtual patients from 3.2 ± 1.7 mm to 

3.7 ± 0.6 mm. 

 

The developed validation procedure allowed an easy implementation of additional algorithmic functionality, 

both on the algorithm and the image resolution side. However, the mean tracking accuracy was largely 

unchanged. The dynamic search function included in tracking “Combination 1” successfully removed matches 

which could be considered outliers and slightly improved the tracking accuracy of patients 1, 4 and 5 as shown 

in Fig. 4. For the “Last Position” functionality, the current 2D match plane of the template is selected from the 

last position best match recorded on an orthogonal plane. When changing between templates, a best match 

location on a diastole template does not necessarily correspond to the same location on a systole template as the 

two are related through a non-rigid deformation. This work suggests that the last position functionality limits 

tracking accuracy. However, in an “All Positions” scenario, the increased number of possible match planes 

increases the chance of an incorrect match location. The potential of using a 4D template solution to overcome 

these limitations will be investigated in the future. 

 

The proposed tracking algorithm tackles a more difficult 4D problem than existing algorithms which track only 

in-plane motion or only respiratory motion, Cerviño et al. [10] produced a mean tracking error of 0.4 mm when 

tracking visible vascular structures of the lung in a free breathing environment using single 2D cine-MRI 

sagittal images. It is important to note that this study did not include out-of-plane motion. Bjerre et al. [2] 

demonstrated 3D tracking of the kidney with an accuracy slightly over 1 mm when utilizing a 3D-2D approach 

similar to the tracking workflow presented in our study. However, none of these studies dealt with the much 



faster and more complex cardiac motion. The difference in accuracies is likely caused by the incomparable 

anatomical locations. 

 

For AF treatment plans, margin sizes less than 3–5 mm may be within acceptable limits [12], [33]. Therefore, 

the tracking error of the tracking algorithm in our study (3.7 ± 0.6 mm) could contribute to the proof-of-concept 

for non-invasive cardiac radiosurgery under real-time MRI guidance. However, improvements to the algorithm 

are the subject of ongoing research in order to further reduce the tracking error. 

 

In comparison to other studies which utilize the XCAT for simulation studies [26, 34], we demonstrated how 

differing patient physiology could influence tracking accuracy. For the 20 virtual patients studied, the heart rate 

was the most influential anatomical parameter affecting the tracking accuracy. Acquisition times of 200 ms may 

indicate that for fast beating hearts, a significant amount of information was lost between real-time planes. 

Advances in real-time MRI using radial fast low-angle shot (FLASH) techniques have allowed for much shorter 

acquisition times [35-37] than used in our proposed MRI workflow. In this case, information regarding a rapid 

heart cycle for use in our tracking algorithm would be adequately acquired with a higher temporal resolution. 

We anticipate the increase in real-time image temporal resolution would lead to a lower tracking error, which is 

under further investigation. Slice thickness is slightly increased in FLASH images, but this work has shown that 

tracking errors of the virtual patient investigations were largely unchanged with varied spatial resolution. 

 

Overall, the results of our work lead us to hypothesize that tracking algorithms for MRI-guided radiotherapy 

could benefit from the validation methodology used in this work: we provided a ground truth comparison and 

removed study recruitment burdens without the adding to departmental workload. This is further demonstrated 

through a number of studies that have attempted to evaluate MRI tracking algorithms for lung cancer 

applications [9, 38, 39]. Shi et al. [9] showed that the performance of an automated template matching 

algorithm had localization accuracy comparable or better than manual delineation however, this was established 

by a trained physician in each real-time frame. Furthermore, this algorithm and subsequent evaluation was 

developed for lung tumor tracking in 2D and did not account for motion orthogonal to the target image, 

characteristic of in vivo evaluation studies and MRI-linac motion compensation strategies to date. In 

comparison to these, our validation is not restricted by this out-of-plane motion. Furthermore, our method is not 

limited by physician delineation time, externally-based phantoms or patient/volunteer recruitment burdens. This 

method of validation could be extended to algorithms that track areas of non-rigid motion in the lung, such as 

tumors in near proximity to the heart wall [40] that experience pulsatile motion. Although not detailed in this 

work, we expect that this validation method could be used for a range of tracking validations and treatment 

planning studies, especially when 4D patient data is difficult to acquire. In fact, imaging data comprising 

cardiac and respiratory motion alike would have been helpful in previous treatment planning studies for cardiac 

radiosurgery [12, 33]. The analysis in this work was made possible by validation through quantitative measures 

provided by the XCAT digital phantom for the first time. 

 

Despite the realistic simulations the XCAT phantom’s most obvious limitation is its digital nature. Tissue 

appearance, tissue motion and imaging modality replication are areas where the XCAT realism could be 

improved. Each anatomical structure is modeled in a homogeneous manner, organs and their sub-structures are 

of the same pixel value. As a result, image artifacts due to tissue heterogeneity are not simulated realistically. In 

our validation procedure, partial volume and noise artifacts were added manually. 

 

Our XCAT study also assumed constant respiratory cycle lengths and heart rates and does not factor any intra-

treatment variation. However, the tracking algorithm performs a new localization search with every real-time 

plane so motion trajectory variability is not anticipated to adversely affect tracking accuracy. Additionally, 



deformation to the heart from respiratory influences [41] was not fully considered as the templates are derived 

from phantoms at full exhale. Deformation to the templates from any other phase of the respiratory cycle was 

not considered. Further to this, the XCAT templates are automatically delineated on the same ‘breath-hold’ 

phantom and hence achieve perfect alignment. In the real-world procedure the breath-hold nature of the 

template scans can lead to geometric misalignment for the templates. 

 

As a consequence, the XCAT must be considered an idealized scenario. However, the virtual study 

demonstrates the usability of data when testing and refining tracking algorithms within a model scenario, which 

is desirable in the wider context of image-guided radiotherapy and radiosurgery. Future versions of the XCAT 

phantom will minimize the current limitations and further promote its use in validating image simulation 

strategies. 

 

5. Conclusion 

We have developed a method of validation for tracking algorithms and applied it to an existing localization 

method for real-time MRI-guided cardiac radiosurgery. The XCAT phantom software was chosen due to the 

common problem of unavailability of real-time anatomical imaging data including respiratory and cardiac 

motion. The presence of a quantitative measure against the ground-truth allowed the investigation of the 

influence of patient-specific anatomical and physiological parameters on tracking performance and helped us to 

improve our tracking algorithms. Current and future MRI tracking strategies and various other applications are 

likely to benefit from this virtual validation. 
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Table 1. Reference values and sources for the physiological parameters of the 4D extended cardiac-torso (XCAT) virtual study. 



Parameter Reference value 

(mean ± SD) 

Reference source 

LA max-diastolic volume 

(ml) 

103 ± 30 Hudsmith et al. [28] 

Heart rate (bpm) 58.3 ± 10.3 ECG data from our scanned 

volunteers [12], [14] 

Respiratory rate (cycles per 

min) 

13.5 ± 1.5 Ganong and Barrett [29] 

LA respiratory motion LR 

(mm) 

3.1 ± 1.1 Ipsen et al. [14] 

LA respiratory motion AP 

(mm) 

5.8 ± 3.5 Ipsen et al. [14] 

LA respiratory motion SI 

(mm) 

16.5 ± 8.0 Ipsen et al. [14] 

 

 

 

 

 

  



Table 2. Individual physiological parameter values of the 20 4D extended cardiac-torso (XCAT) virtual patients. 

Patient Maximal LA 

volume (ml) 

LA respiratory motion Heart rate 

(bpm) 

Respiratory rate (cycles 

per min) 

AP 

(mm) 

LR 

(mm) 

SI 

(mm) 

1 73.1 14.0 1.2 27.0 65 14.4 

2 88.6 10.1 2.7 16.7 66 15.2 

3 104.8 1.0 4.9 15.6 75 13.1 

4 92.1 8.5 2.1 25.5 59 13.9 

5 104.0 6.5 5.2 9.6 68 11.5 

6 79.5 8.5 2.6 12.0 54 15.5 

7 102.2 7.2 1.2 14.8 42 10.8 

8 77.3 2.7 4.0 11.8 64 13.0 

9 69.0 6.8 2.7 23.1 69 16.5 

10 103.5 7.4 3.5 23.5 64 12.0 

11 119.8 5.8 2.5 8.4 48 13.2 

12 55.2 7.1 3.3 16.9 50 11.6 

13 89.7 2.9 3.9 9.3 56 13.0 

14 122.6 14.7 4.2 15.5 54 10.5 

15 49.4 1.8 2.5 17.2 79 14.6 

16 94.6 6.4 4.5 26.7 78 13.6 

17 103.5 8.8 3.9 11.9 64 12.5 

18 82.7 0.7 2.1 22.9 48 12.7 

19 90.9 4.7 2.6 4.6 55 13.8 

20 71.0 11.1 3.3 19.2 60 15.6 

 



Table 3. The simulated MRI parameters for the 3D breath-hold planning and 2D-2D real-time scans conducted on the twenty 4D 

extended cardiac-torso (XCAT) virtual patients. 

Parameter 3D breath-hold planning scan 2D-2D orthogonal real-time scan 

Scan direction Sagittal Sagittal – coronal 

In-plane pixel size 1.3 mm 2 mm 

Slice thickness 5.2 mm 6 mm 

Field-of-view 318.5 mm2 320 mm2 

Cardiac phases Systole/end-diastole – 

Temporal resolution – 200 ms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Individual anatomical parameters and tracking error for the best, average and worst case virtual patients. 

Virtual 

patient 

Maximal 

LA volume 

(ml) 

AP 

(mm) 

LA 

respiratory 

motion LR 

(mm) 

SI 

(mm) 

Heart 

rate 

(bpm) 

Respiratory 

rate (cycles per 

min) 

Tracking 

error ep(mm) 

12 (Best 

case) 

55.2 7.1 3.3 16.9 50 11.6 2.4 

14 

(Average 

case) 

122.6 14.7 4.2 15.5 54 10.5 3.6 

16 (Worst 

case) 

94.6 6.4 4.5 26.7 78 13.6 5.4 



  



Table 5. Pearson correlation coefficient r and p-values for tracking accuracy against the physiological parameters of the 4D extended 

cardiac-torso (XCAT) virtual study. 

Anatomical parameter r p 

LA max-diastolic volume 0.31 0.19 

Heart rate 0.54 0.014 

Respiratory rate -0.03 0.90 

LA respiratory motion LR 0.28 0.24 

LA respiratory motion AP -0.18 0.46 

LA respiratory motion SI 0.31 0.19 

 

        

 

 

 

 

  



 

 

Fig. 1. Three phantoms were generated for each of the 20 virtual patients. Two static 3D end-exhale phantoms, 

one at atrial systole and one at atrial end-diastole (left), were used to delineate the 3D templates from each 2D 

slice containing left atrium target volume. The third phantom, a dynamic 4D phantom representing a free 

breathing scenario (right) was generated and orthogonal “real-time” slices were extracted at 200 ms intervals. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2. Sagittal slice orientation of a) a real-time sagittal plane from Ipsen et al. [14] b) an original MRI 

simulated XCAT phantom and c) inclusion of partial volume and noise effects. 

 

 

 

 

  



 

 

 

Fig. 3. (Left) 3D volume render of the XCAT cardiac model, lighter grey highlighting the target LA. (Right) 

The volumetric center coordinate of the bounding box, shown as the small green box, was calculated in each 

real-time frame as the ground-truth target position. 

 

 

 

 

 

 

 

 

  



 

 

Fig. 4. Individual patients’ 3D tracking errors across the 20 virtual patients for the original tracking algorithm 

and three scenarios of different tracking function combinations. 

 

 

 

 

  



 

 

Fig. 5. Representative tracking performances for three virtual patients. Virtual patient 12 illustrates a best case 

scenario (a). Virtual patient 14 illustrates an average case (b) and virtual patient 16 illustrates a worst case 

tracking performance (c). 


