166 research outputs found

    Lattice congruences of the weak order

    Full text link
    We study the congruence lattice of the poset of regions of a hyperplane arrangement, with particular emphasis on the weak order on a finite Coxeter group. Our starting point is a theorem from a previous paper which gives a geometric description of the poset of join-irreducibles of the congruence lattice of the poset of regions in terms of certain polyhedral decompositions of the hyperplanes. For a finite Coxeter system (W,S) and a subset K of S, let \eta_K:w \mapsto w_K be the projection onto the parabolic subgroup W_K. We show that the fibers of \eta_K constitute the smallest lattice congruence with 1\equiv s for every s\in(S-K). We give an algorithm for determining the congruence lattice of the weak order for any finite Coxeter group and for a finite Coxeter group of type A or B we define a directed graph on subsets or signed subsets such that the transitive closure of the directed graph is the poset of join-irreducibles of the congruence lattice of the weak order.Comment: 26 pages, 4 figure

    Five-Torsion in the Homology of the Matching Complex on 14 Vertices

    Full text link
    J. L. Andersen proved that there is 5-torsion in the bottom nonvanishing homology group of the simplicial complex of graphs of degree at most two on seven vertices. We use this result to demonstrate that there is 5-torsion also in the bottom nonvanishing homology group of the matching complex M14M_{14} on 14 vertices. Combining our observation with results due to Bouc and to Shareshian and Wachs, we conclude that the case n=14n=14 is exceptional; for all other nn, the torsion subgroup of the bottom nonvanishing homology group has exponent three or is zero. The possibility remains that there is other torsion than 3-torsion in higher-degree homology groups of MnM_n when n13n \ge 13 and n14n \neq 14.Comment: 11 page

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Character formulas for the operad of two compatible brackets and for the bihamiltonian operad

    Full text link
    We compute dimensions of the components for the operad of two compatible brackets and for the bihamiltonian operad. We also obtain character formulas for the representations of the symmetric groups and the SL2SL_2 group in these spaces.Comment: 24 pages, accepted by Functional Analysis and its Applications, a few typos correcte

    Coloured peak algebras and Hopf algebras

    Get PDF
    For GG a finite abelian group, we study the properties of general equivalence relations on G_n=G^n\rtimes \SG_n, the wreath product of GG with the symmetric group \SG_n, also known as the GG-coloured symmetric group. We show that under certain conditions, some equivalence relations give rise to subalgebras of \k G_n as well as graded connected Hopf subalgebras of \bigoplus_{n\ge o} \k G_n. In particular we construct a GG-coloured peak subalgebra of the Mantaci-Reutenauer algebra (or GG-coloured descent algebra). We show that the direct sum of the GG-coloured peak algebras is a Hopf algebra. We also have similar results for a GG-colouring of the Loday-Ronco Hopf algebras of planar binary trees. For many of the equivalence relations under study, we obtain a functor from the category of finite abelian groups to the category of graded connected Hopf algebras. We end our investigation by describing a Hopf endomorphism of the GG-coloured descent Hopf algebra whose image is the GG-coloured peak Hopf algebra. We outline a theory of combinatorial GG-coloured Hopf algebra for which the GG-coloured quasi-symmetric Hopf algebra and the graded dual to the GG-coloured peak Hopf algebra are central objects.Comment: 26 pages latex2

    Combinatorial Markov chains on linear extensions

    Full text link
    We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the uniform distribution, whereas the weights of the stationary state of the other has a nice product formula. This generalizes results by Hendricks on the Tsetlin library, which corresponds to the case when the poset is the anti-chain and hence L=S_n is the full symmetric group. We also provide explicit eigenvalues of the transition matrix in general when the poset is a rooted forest. This is shown by proving that the associated monoid is R-trivial and then using Steinberg's extension of Brown's theory for Markov chains on left regular bands to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in terms of discrete time Markov chain

    Recognizing hyperelliptic graphs in polynomial time

    Get PDF
    Recently, a new set of multigraph parameters was defined, called "gonalities". Gonality bears some similarity to treewidth, and is a relevant graph parameter for problems in number theory and multigraph algorithms. Multigraphs of gonality 1 are trees. We consider so-called "hyperelliptic graphs" (multigraphs of gonality 2) and provide a safe and complete sets of reduction rules for such multigraphs, showing that for three of the flavors of gonality, we can recognize hyperelliptic graphs in O(n log n+m) time, where n is the number of vertices and m the number of edges of the multigraph.Comment: 33 pages, 8 figure

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n2)!(n-2)! spheres of dimension n4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams

    Full text link
    We consider the problem of finding the number of matrices over a finite field with a certain rank and with support that avoids a subset of the entries. These matrices are a q-analogue of permutations with restricted positions (i.e., rook placements). For general sets of entries these numbers of matrices are not polynomials in q (Stembridge 98); however, when the set of entries is a Young diagram, the numbers, up to a power of q-1, are polynomials with nonnegative coefficients (Haglund 98). In this paper, we give a number of conditions under which these numbers are polynomials in q, or even polynomials with nonnegative integer coefficients. We extend Haglund's result to complements of skew Young diagrams, and we apply this result to the case when the set of entries is the Rothe diagram of a permutation. In particular, we give a necessary and sufficient condition on the permutation for its Rothe diagram to be the complement of a skew Young diagram up to rearrangement of rows and columns. We end by giving conjectures connecting invertible matrices whose support avoids a Rothe diagram and Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl

    Realizability of Polytopes as a Low Rank Matrix Completion Problem

    Full text link
    This article gives necessary and sufficient conditions for a relation to be the containment relation between the facets and vertices of a polytope. Also given here, are a set of matrices parameterizing the linear moduli space and another set parameterizing the projective moduli space of a combinatorial polytope
    corecore