5,608 research outputs found
Performances of linseed oil-free bakelite RPC prototypes with cosmic ray muons
A comparative study has been performed on Resistive Plate Chambers (RPC) made
of two different grades of bakelite paper laminates, produced and commercially
available in India. The chambers, operated in the streamer mode using argon,
tetrafluroethane and isobutane in 34:59:7 mixing ratio, are tested for the
efficiency and the stability with cosmic rays. A particular grade of bakelite
(P-120, NEMA LI-1989 Grade XXX), used for high voltage insulation in humid
conditions, was found to give satisfactory performance with stable efficiency
of > 96% continuously for more than 130 days. A thin coating of silicone fluid
on the inner surfaces of the bakelite RPC is found to be necessary for
operation of the detector.Comment: 6 figures, Presented in IX International Workshop on Resistive Plate
Chamber and related Detectors-2007, TIFR, Mumbai, India, February 13-16, 200
Electron-impact ionization of atomic hydrogen at 2 eV above threshold
The convergent close-coupling method is applied to the calculation of fully
differential cross sections for ionization of atomic hydrogen by 15.6 eV
electrons. We find that even at this low energy the method is able to yield
predictive results with small uncertainty. As a consequence we suspect that the
experimental normalization at this energy is approximately a factor of two too
high.Comment: 10 page
Systematical Approach to the Exact Solution of the Dirac Equation for A Special Form of the Woods-Saxon Potential
Exact solution of the Dirac equation for a special form of the Woods-Saxon
potential is obtained for the s-states. The energy eigenvalues and
two-component spinor wave functions are derived by using a systematical method
which is called as Nikiforov-Uvarov. It is seen that the energy eigenvalues
strongly depend on the potential parameters. In addition, it is also shown that
the non-relativistic limit can be reached easily and directly.Comment: 10 pages, no figures, submitted for Publicatio
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
Screened alpha decay in dense astrophysical plasmas and magnetars
This paper shows that ultrastrong magnetic fields (such as those of
magnetars) and dense astrophysical plasmas can reduce the half life of alpha
decaying nuclei by many orders of magnitude. In such environments the
conventional Geiger-Nuttall law is modifed so that all half lives are shifted
to dramatically lower values. Those effects, which have never been investigated
before, may have significant implications on the universal abundances of heavy
radioactive elements and the cosmochronological methods that rely on them.Comment: 15 RevTex pages, 3 ps figures (minor revision). This work was
presented during the conference ''Supernova, 10 years of SN1993J'', April
2003, Valencia, Spain. Accepted for publication in Phys.Rev.
Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states
The Faddeev-Yakubowsky equations in configuration space have been solved for
the four nucleon system. The results with an S-wave interaction model in the
isospin approximation are presented. They concern the bound and scattering
states below the first three-body threshold. The elastic phase-shifts for the
N+NNN reaction in different () channels are given and the corresponding
low energy expansions are discussed. Particular attention is payed to the n+t
elastic cross section. Its resonant structure is well described in terms of a
simple NN interaction. First results concerning the S-matrix for the coupled
N+NNN-NN+NN channels and the strong deuteron-deuteron scattering length are
obtained.Comment: latex.tar.gz, 36 pages, 10 figures, 11 tables. To be published in
Physical Review
Climate of the upper atmosphere
In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS)investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere is
most essential for the propagation of radio waves. Due to collaboration between different European partners many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere, the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.Published273-2991.7. Osservazioni di alta e media atmosferaJCR Journalreserve
VHMPID: a new detector for the ALICE experiment at LHC
This article presents the basic idea of VHMPID, an upgrade detector for the
ALICE experiment at LHC, CERN. The main goal of this detector is to extend the
particle identification capabilities of ALICE to give more insight into the
evolution of the hot and dense matter created in Pb-Pb collisions. Starting
from the physics motivations and working principles the challenges and current
status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
- âŠ