421 research outputs found
Optimal Placement Algorithms for Virtual Machines
Cloud computing provides a computing platform for the users to meet their
demands in an efficient, cost-effective way. Virtualization technologies are
used in the clouds to aid the efficient usage of hardware. Virtual machines
(VMs) are utilized to satisfy the user needs and are placed on physical
machines (PMs) of the cloud for effective usage of hardware resources and
electricity in the cloud. Optimizing the number of PMs used helps in cutting
down the power consumption by a substantial amount.
  In this paper, we present an optimal technique to map virtual machines to
physical machines (nodes) such that the number of required nodes is minimized.
We provide two approaches based on linear programming and quadratic programming
techniques that significantly improve over the existing theoretical bounds and
efficiently solve the problem of virtual machine (VM) placement in data
centers
Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study.
PurposeOsteogenesis imperfecta (OI) predisposes people to recurrent fractures, bone deformities, and short stature. There is a lack of large-scale systematic studies that have investigated growth parameters in OI.MethodsUsing data from the Linked Clinical Research Centers, we compared height, growth velocity, weight, and body mass index (BMI) in 552 individuals with OI. Height, weight, and BMI were plotted on Centers for Disease Control and Prevention normative curves.ResultsIn children, the median z-scores for height in OI types I, III, and IV were -0.66, -6.91, and -2.79, respectively. Growth velocity was diminished in OI types III and IV. The median z-score for weight in children with OI type III was -4.55. The median z-scores for BMI in children with OI types I, III, and IV were 0.10, 0.91, and 0.67, respectively. Generalized linear model analyses demonstrated that the height z-score was positively correlated with the severity of the OI subtype (P < 0.001), age, bisphosphonate use, and rodding (P < 0.05).ConclusionFrom the largest cohort of individuals with OI, we provide median values for height, weight, and BMI z-scores that can aid the evaluation of overall growth in the clinic setting. This study is an important first step in the generation of OI-specific growth curves
Effect of Herbal Liver-tonic Supplements on Production Performance in HF Dairy Cattle
A study was conducted to observe the influence of herbal liver-tonic supplementation on milk production, liver function and feed intake in HF crossbred dairy cattle at field level. This study was carried out in 24 HF cattle and these were randomly grouped into three groups viz. Group 1 served as control group, Group II served as Treatment -I (supplemented with polyherbal liver tonic @ 30ml/day) and Group III as Treatment-2 (supplemented with polyherbal liver tonic @ 45ml/day). Day 1 to 7 is considered as before treatment, Day 8 to 17 as treatment period and day 18 to 32 as after treatment. The blood collected during study period and stored at -20 °C until further analysis. The data were also regularly recorded for milk production, SNF Content of milk, feed intake. Statistical analysis of result revealed that herbal liver-tonic supplementation showed non-significant (P>0.05) difference on liver enzymes profile. Statistically no significant difference is also noted on milk production, milk fat and SNF Content in HF Cattle at field conditions
miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway
miRNAs participate in the regulation of apoptosis. However, it remains largely unknown as to how miRNAs are integrated into the apoptotic program. Mitochondrial fission is involved in the initiation of apoptosis. It is not yet clear whether miRNAs are able to regulate mitochondrial fission. Here we report that miR-30 family members are able to regulate apoptosis by targeting the mitochondrial fission machinery. Our data show that miR-30 family members can inhibit mitochondrial fission and the consequent apoptosis. In exploring the underlying molecular mechanism, we identified that miR-30 family members can suppress p53 expression. In response to the apoptotic stimulation, the expression levels of miR-30 family members were reduced, whereas p53 was upregulated. p53 transcriptionally activated the mitochondrial fission protein, dynamin-related protein-1 (Drp1). The latter conveyed the apoptotic signal of p53 by initiating the mitochondrial fission program. miR-30 family members inhibited mitochondrial fission through suppressing the expression of p53 and its downstream target Drp1. Our data reveal a novel model in which a miRNA can regulate apoptosis through targeting the mitochondrial fission machinery
A single high‐fat meal alters human soluble RAGE profiles and PBMC RAGE expression with no effect of prior aerobic exercise
A high‐fat diet can induce inflammation and metabolic diseases such as diabetes and atherosclerosis. The receptor for advanced glycation endproducts (RAGE) plays a critical role in metabolic disease pathophysiology and the soluble form of the receptor (sRAGE) can mitigate these effects. However, little is known about RAGE in the postprandial condition and the effect of exercise in this context. Thus, we aimed to determine the effects of a single high‐fat meal (HFM) with and without prior exercise on peripheral blood mononuclear cell (PBMC) RAGE biology. Healthy males (n = 12) consumed a HFM on two occasions, one without prior exercise and one 16–18 hours following acute aerobic exercise. Total soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) were determined via ELISA and cleaved RAGE (cRAGE) was calculated as the difference between the two. Isolated PBMCs were analyzed for RAGE, ADAM10, TLR4, and MyD88 protein expression and ADAM10 activity. The HFM significantly (P < 0.01) attenuated sRAGE, esRAGE, and cRAGE by 9.7%, 6.9%, and 10.5%, respectively. Whereas, the HFM increased PBMC RAGE protein expression by 10.3% (P < 0.01), there was no meal effect on PBMC TLR4, MYD88, or ADAM10 protein expression, nor ADAM10 activity. There was also no exercise effect on any experimental outcomes. These findings suggest that PBMC RAGE and soluble RAGE may be important in the postprandial response to a HFM, and that prior aerobic exercise does not alter these processes in young healthy adult males. The mechanisms by which a HFM induces RAGE expression and reduces circulating soluble RAGE isoforms requires further study.Receptor for advanced glycation endproducts expression differs among circulating immune cell populations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/1/phy213811_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/2/phy213811.pd
Recommended from our members
The safety and efficacy of systemic delivery of a new liver-de-targeted TGFβ signaling inhibiting adenovirus in an immunocompetent triple negative mouse mammary tumor model
Aberrant TGFβ signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFβ signaling inhibitory protein (sTGFβRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFβRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC
LIGHT Elevation Enhances Immune Eradication of Colon Cancer Metastases
The majority of patients with colon cancer will develop advanced disease, with the liver being the most common site of metastatic disease. Patients with increased numbers of tumor-infiltrating lymphocytes in primary colon tumors and liver metastases have improved outcomes. However, the molecular factors that could empower antitumor immune responses in this setting remain to be elucidated. We reported that the immunostimulatory cytokine LIGHT (TNFSF14) in the microenvironment of colon cancer metastases associates with improved patient survival, and here we demonstrate in an immunocompetent murine model that colon tumors expressing LIGHT stimulate lymphocyte proliferation and tumor cell-specific antitumor immune responses. In this model, increasing LIGHT expression in the microenvironment of either primary tumors or liver metastases triggered regression of established tumors and slowed the growth of liver metastases, driven by cytotoxic T-lymphocyte-mediated antitumor immunity. These responses corresponded with significant increases in tumor-infiltrating lymphocytes and increased expression of lymphocyte-homing signals in the metastatic tumors. Furthermore, we demonstrated evidence of durable tumor-specific antitumor immunity. In conclusion, increasing LIGHT expression increased T-cell proliferation, activation, and infiltration, resulting in enhanced tumor-specific immune-mediated tumor regressions in primary tumors and colorectal liver metastases. Mechanisms to increase LIGHT in the colon cancer microenvironment warrant further investigation and hold promise as an immunotherapeutic strategy. Cancer Res; 77(8); 1880-91. ©2017 AACR
Changing Minds: Multitasking During Lectures
This chapter takes a multidisciplinary approach to multitasking. Media multitasking has, consequently, become a frequent topic amongst academics yetsome remarkable new research reveals we may not be taking into full account the changes to our students’ ability to learn given the changes to their brains. The risks of multitasking to student achievement has been well researched yet many of the positive related developments in the neurosciences are less well known. This chapter reviews some of this research bringing together information foraging theory, cognitive control and confirmation bias as they relate to the multitaskingGeneration Z student in higher education. Some significant research findings are discussed including using laptops and similar devices in the classroom. A small survey underpins these discussions at the end of the chapter highlighting student perspectives on multitasking during lectures
- …
