100 research outputs found

    Characterization of Cyclin E Expression in Multiple Myeloma and Its Functional Role in Seliciclib-Induced Apoptotic Cell Death

    Get PDF
    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator – cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator - cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion–mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy

    A polygenic risk score for multiple myeloma risk prediction

    Get PDF
    There is overwhelming epidemiologic evidence that the risk of multiple myeloma (MM) has a solid genetic background. Genome-wide association studies (GWAS) have identified 23 risk loci that contribute to the genetic susceptibility of MM, but have low individual penetrance. Combining the SNPs in a polygenic risk score (PRS) is a possible approach to improve their usefulness. Using 2361 MM cases and 1415 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium, we computed a weighted and an unweighted PRS. We observed associations with MM risk with OR = 3.44, 95% CI 2.53–4.69, p = 3.55 × 10−15 for the highest vs. lowest quintile of the weighted score, and OR = 3.18, 95% CI 2.1 = 34–4.33, p = 1.62 × 10−13 for the highest vs. lowest quintile of the unweighted score. We found a convincing association of a PRS generated with 23 SNPs and risk of MM. Our work provides additional validation of previously discovered MM risk variants and of their combination into a PRS, which is a first step towards the use of genetics for risk stratification in the general population

    Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2(+) γδ T cell cytotoxicity in a perforin-dependent manner.

    Get PDF
    Vδ2(+) T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2(+) T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2(+) T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C-C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2(+) T cell cytotoxicity. Vδ2(+) T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive-at least in part-to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2(+) T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy

    Neural correlates of a single-session massage treatment

    Get PDF
    The current study investigated the immediate neurophysiological effects of different types of massage in healthy adults using functional magnetic resonance imaging (fMRI). Much attention has been given to the default mode network, a set of brain regions showing greater activity in the resting state. These regions (i.e. insula, posterior and anterior cingulate, inferior parietal and medial prefrontal cortices) have been postulated to be involved in the neural correlates of consciousness, specifically in arousal and awareness. We posit that massage would modulate these same regions given the benefits and pleasant affective properties of touch. To this end, healthy participants were randomly assigned to one of four conditions: 1. Swedish massage, 2. reflexology, 3. massage with an object or 4. a resting control condition. The right foot was massaged while each participant performed a cognitive association task in the scanner. We found that the Swedish massage treatment activated the subgenual anterior and retrosplenial/posterior cingulate cortices. This increased blood oxygen level dependent (BOLD) signal was maintained only in the former brain region during performance of the cognitive task. Interestingly, the reflexology massage condition selectively affected the retrosplenial/posterior cingulate in the resting state, whereas massage with the object augmented the BOLD response in this region during the cognitive task performance. These findings should have implications for better understanding how alternative treatments might affect resting state neural activity and could ultimately be important for devising new targets in the management of mood disorders

    Interaction between CXCR4 and CCL20 Pathways Regulates Tumor Growth

    Get PDF
    The chemokine receptor CXCR4 and its ligand CXCL12 is overexpressed in the majority of tumors and is critically involved in the development and metastasis of these tumors. CXCR4 is expressed in malignant tumor cells whereas its ligand SDF-1 (CXCL12) is expressed mainly by cancer associated fibroblasts (CAF). Similarly to CXCR4, the chemokine CCL20 is overexpressed in variety of tumors; however its role and regulation in tumors is not fully clear. Here, we show that the chemokine receptor CXCR4 stimulates the production of the chemokine CCL20 and that CCL20 stimulates the proliferation and adhesion to collagen of various tumor cells. Furthermore, overexpression of CCL20 in tumor cells promotes growth and adhesion in vitro and increased tumor growth and invasiveness in vivo. Moreover, neutralizing antibodies to CCL20 inhibit the in vivo growth of tumors that either overexpress CXCR4 or CCL20 or naturally express CCL20. These results reveal a role for CCL20 in CXCR4-dependent and -independent tumor growth and suggest a therapeutic potential for CCL20 and CCR6 antagonists in the treatment of CXCR4- and CCL20-dependent malignancies

    CCL21/CCR7 Prevents Apoptosis via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells

    Get PDF
    Previously, we confirmed that C-C chemokine receptor 7 (CCR7) promotes cell proliferation via the extracellular signal-regulated kinase (ERK) pathway, but its role in apoptosis of non-small cell lung cancer (NSCLC) cell lines remains unknown. A549 and H460 cells of NSCLC were used to examine the effect of CCL21/CCR7 on apoptosis using flow cytometry. The results showed that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a significant decline in the percent of apoptosis. Western blot and real-time PCR assays indicated that activation of CCR7 significantly caused upregulation of anti-apoptotic bcl-2 and downregulation of pro-apoptotic bax and caspase-3, but not p53, at both protein and mRNA levels. CCR7 small interfering RNA significantly attenuated these effects of exogenous CCL21. Besides, PD98059, a selective inhibitor of MEK that disrupts the activation of downstream ERK, significantly abolished these effects of CCL21/CCR7. Coimmunoprecipitation further confirmed that there was an interaction between p-ERK and bcl-2, bax, or caspase-3, particularly in the presence of CCL21. These results strongly suggest that CCL21/CCR7 prevents apoptosis by upregulating the expression of bcl-2 and by downregulating the expression of bax and caspase-3 potentially via the ERK pathway in A549 and H460 cells of NSCLC

    Pubertal high fat diet: effects on mammary cancer development

    Get PDF
    INTRODUCTION: Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS: Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS: HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS: Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD

    Medical Malpractice : How Legal Liability Affects Medical Decisions

    Get PDF
    In health care, overuse and underuse of medical treatments represent equally dangerous deviations from an optimal use equilibrium and arouses concerns about possible implications for patients\u2019 health, and for the healthcare system in terms of both costs and access to medical care. Medical liability plays a dominant role among the elements that can affect these deviations. Therefore, a remarkable economic literature studies how medical decisions are influenced by different levels of liability. In particular, identifying the relation between liability and treatments selection, as well as disentangling the effect of liability from other incentives that might be in place, is a task for sound empirical research. Several studies have already tried to tackle this issue, but much more needs to be done. In the present chapter, we offer an overview of the state of the art in the study of the relation between liability and treatments selection. First, we reason on the theoretical mechanisms underpinning the relationship under investigation by presenting the main empirical predictions of the related literature. Second, we provide a comprehensive summary of the existing empirical evidence and its main weaknesses. Finally, we conclude by offering guidelines for further research
    • …
    corecore