25 research outputs found

    REPORT ON THE NDC CAPACITY BUILDING AND REGIONAL SEISMIC TRAVEL TIME WORKSHOP AND TRAINING

    Get PDF

    Nuclear shapes of highly deformed bands in Hf171,172 and neighboring Hf isotopes

    Get PDF
    A Gammasphere experiment was carried out to search for triaxial strongly deformed (TSD) structures in Hf171,172 and the wobbling mode, a unique signature of nuclei with stable triaxiality. Three strongly deformed bands in Hf172 and one in Hf171 were identified through Ca48(Te128, xn) reactions. Linking transitions were established for the band in Hf171 and, consequently, its excitation energies and spins (up to 111/2) were firmly established. However, none of the Hf172 sequences were linked to known structures. Experimental evidence of triaxiality was not observed in these bands. The new bands are compared with other known strongly deformed bands in neighboring Hf isotopes. Theoretical investigations within various models have been performed. Cranking calculations with the Ultimate Cranker code suggest that the band in Hf171 and two previously proposed TSD candidates in Hf170 and Hf175 are built on proton (i13/2h9/2) configurations, associated with near-prolate shapes and deformations enhanced with respect to the normal deformed bands. Cranked relativistic mean-field calculations suggest that band 2 in Hf175 has most likely a near-prolate superdeformed shape involving the πi13/2νj15/2 high-j intruder orbitals. It is quite likely that the bands in Hf172 are similar in character to this band

    Sustained oscillations of epithelial cell sheets

    No full text
    Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes

    Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance - the U.S. E-37 Trial

    No full text
    Objectives The Automatic Stimulation Mode (AutoStim) feature of the Model 106 Vagus Nerve Stimulation (VNS) Therapy System stimulates the left vagus nerve on detecting tachycardia. This study evaluates performance, safety of the AutoStim feature during a 3-5-day Epilepsy Monitoring Unit (EMU) stay and long- term clinical outcomes of the device stimulating in all modes. Materials and Methods The E-37 protocol (NCT01846741) was a prospective, unblinded, U.S. multisite study of the AspireSR® in subjects with drug-resistant partial onset seizures and history of ictal tachycardia. VNS Normal and Magnet Modes stimulation were present at all times except during the EMU stay. Outpatient visits at 3, 6, and 12 months tracked seizure frequency, severity, quality of life, and adverse events. Results Twenty implanted subjects (ages 21-69) experienced 89 seizures in the EMU. 28/38 (73.7%) of complex partial and secondarily generalized seizures exhibited ‰¥20% increase in heart rate change. 31/89 (34.8%) of seizures were treated by Automatic Stimulation on detection; 19/31 (61.3%) seizures ended during the stimulation with a median time from stimulation onset to seizure end of 35 sec. Mean duty cycle at six-months increased from 11% to 16%. At 12 months, quality of life and seizure severity scores improved, and responder rate was 50%. Common adverse events were dysphonia (n = 7), convulsion (n = 6), and oropharyngeal pain (n = 3). Conclusions The Model 106 performed as intended in the study population, was well tolerated and associated with clinical improvement from baseline. The study design did not allow determination of which factors were responsible for improvements
    corecore