3,636 research outputs found
Lambda hyperonic effect on the normal driplines
A generalized mass formula is used to calculate the neutron and proton drip
lines of normal and lambda hypernuclei treating non-strange and strange nuclei
on the same footing. Calculations suggest existence of several bound
hypernuclei whose normal cores are unbound. Addition of Lambda or,
Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the
neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur
Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines
Nuclear masses are calculated using the modified Bethe-Weizsacker mass
formula in which the isotonic shifts have been incorporated. The results are
compared with the improved liquid drop model with isotonic shift. Mass excesses
predicted by this method compares well with the microscopic-macroscopic model
while being much more simple. The neutron and proton drip lines have been
predicted using this modified Bethe-Weizsacker mass formula with isotonic
shifts.Comment: 9 pages including 2 figure
Parts of Quantum States
It is shown that generic N-party pure quantum states (with equidimensional
subsystems) are uniquely determined by their reduced states of just over half
the parties; in other words, all the information in almost all N-party pure
states is in the set of reduced states of just over half the parties. For N
even, the reduced states in fewer than N/2 parties are shown to be an
insufficient description of almost all states (similar results hold when N is
odd). It is noted that Real Algebraic Geometry is a natural framework for any
analysis of parts of quantum states: two simple polynomials, a quadratic and a
cubic, contain all of their structure. Algorithmic techniques are described
which can provide conditions for sets of reduced states to belong to pure or
mixed states.Comment: 10 pages, 1 figur
Importance of -stripping process in the Li+Tb reaction
The inclusive cross sections of the -particles produced in the
reaction Li+Tb have been measured at energies around the Coulomb
barrier. The measured cross sections are found to be orders of magnitude larger
than the calculated cross sections of Li breaking into and
fragments, thus indicating contributions from other processes. The experimental
cross sections of -stripping and -pickup processes have been determined
from an entirely different measurement, reported earlier. Apart from incomplete
fusion and/ -transfer processes, the -stripping process is found to be a
significant contributor to the inclusive -particle cross sections in
this reaction
How high the temperature of a liquid be raised without boiling?
How high the temperature of a liquid be raised beyond its boiling point
without vaporizing (known as the limit of superheat) is an interesting subject
of investigation. A new method of finding the limit of superheat of liquids is
presented here. The superheated liquids are taken in the form of drops
suspended in visco elastic gel. The nucleation is detected acoustically by a
sensitive piezo-electric transducer, coupled to a multi channel scaler and the
nucleation is observed as a funtion of time and with increase of temperature.
The limit of superheat measured by the present method supersedes all other
measurements and theoretical predictions in reaching closest to the critical
temperature and warrants improved theoretical predictions.Comment: 10 pages, 1 fig. Phys, Rev. E. (2000) in pres
Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells.
Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6) has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1), the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion
High Superconductivity, Skyrmions and the Berry Phase
It is here pointed out that the antiferromagnetic spin fluctuation may be
associated with a gauge field which gives rise to the antiferromagnetic ground
state chirality. This is associated with the chiral anomaly and Berry phase
when we consider the two dimensional spin system on the surface of a 3D sphere
with a monopole at the centre. This realizes the RVB state where spinons and
holons can be understood as chargeless spins and spinless holes attached with
magnetic flux. The attachment of the magnetic flux of the charge carrier
suggest, that this may be viewed as a skyrmion. The interaction of a massless
fermion representing a neutral spin with a gauge field along with the
interaction of a spinless hole with the gauge field enhances the
antiferromagnetic correlation along with the pseudogap at the underdoped
region. As the doping increases the antiferromagnetic long range order
disappears for the critical doping parameter . In this framework,
the superconducting pairing may be viewed as caused by skyrmion-skyrmion bound
states.Comment: 10 pages, accepted in Phys. Rev.
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Photonic analogues of the relativistic Kronig-Penney model and of
relativistic surface Tamm states are proposed for light propagation in fibre
Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in
the FBG realizes the relativistic Kronig-Penney model, the band structure of
which being mapped into the spectral response of the FBG. For the semi-infinite
FBG Tamm surface states can appear and can be visualized as narrow resonance
peaks in the transmission spectrum of the grating
- …
