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RESEARCH ARTICLE
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Colon Cancer Cells1
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University of Arizona, Tucson, AZ, USA; †Department of
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Cancer Center, University of Arizona, Tucson, AZ, USA;
¶Department of Biochemistry and Molecular Biophysics,
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Abstract
Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence
or progression of certain types of cancers. Kallikrein 6 (KLK6) has been shown to be upregulated in several types
of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression
and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1
(CAV-1), the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gra-
dient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane
of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule,
enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased
KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated
AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that
proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and
KLK6 secretion.

Neoplasia (2008) 10, 140–148

Introduction
The kallikrein protein family consists of 15 serine proteases, each of
which has a unique pattern of expression and set of substrates [1].
The most widely known and used kallikrein (KLK) is KLK3, also
known as prostate-specific antigen. Because of their nature as secreted
proteins, kallikreins are currently under investigation as potential bio-
markers. For the kallikrein family of proteins to be useful biomarkers
for either the presence or the progression of cancer, it is crucial to
know under which conditions kallikreins are aberrantly expressed.

Kallikrein 6 (KLK6) is being examined as a marker for certain
types of ovarian and uterine cancers [2,3]. KLK6 mRNA and se-
creted protein were found to be significantly upregulated in uterine
serous papillary cancer compared to benign tumor and endometrial
carcinoma patients [3]. Patients with ovarian carcinoma also had sig-

nificantly higher levels of serum KLK6, about twice the concentra-
tion of normal or benign tumor patients [2]. In both gastric and
colon cancer, KLK6 mRNA was observed to be more highly ex-
pressed compared to normal mucosa [4,5]. In each previously
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mentioned study, above-average expression of KLK6 correlated with
a poor prognosis [2–5]. This may be due to the role of KLK6 in can-
cer progression. KLK6 has been implicated in angiogenesis, migra-
tion, and invasion through mechanisms involving extracellular
matrix (ECM) degradation [1]. Substrates for KLK6 include col-
lagen, fibrinogen, fibronectin, and laminin [1,6]. Prezas et al. [7]
demonstrated that ovarian cells that were stably transfected to express
KLK4, 5, 6, and 7 were significantly more invasive in vitro and
formed larger tumors in mice. Another study demonstrated that a
synthetic kallikrein inhibitor attenuated tumor cell invasiveness
through a matrigel substrate [8].
The protein caveolin-1 (CAV-1) is frequently expressed abnormally

in colon cancer and appears to contribute to aberrant signaling and
protein trafficking. CAV-1 is a structural protein required for the for-
mation of caveolae in nonmuscle cells [9,10]. Caveolae are flask-
shaped plasma membrane invaginations present in nearly all cell
types which function as lipid raft and scaffolding domains within
the plasma membrane [9]. There has been much controversy regard-
ing the role of CAV-1 in cancer. It has been implicated to act as both
a tumor suppressor and an oncogene, depending on the tissue of ori-
gin and stage of disease. These findings have been thoroughly sum-
marized in several reviews [9,11–13]. In addition to varied levels of
expression, the stability and activity of CAV-1 are also frequently al-
tered in cancer. CAV-1, in its unphosphorylated form, acts to stabi-
lize caveolae [14]. When CAV-1 is phosphorylated, most commonly
at tyrosine-14 by SRC kinase, it dissociates from the caveolae, thereby
destabilizing it [15–17]. SRC activity is elevated in a wide variety of
other cancers, including breast, lung, pancreatic, ovarian, and gastric,
and in colon cancer, SRC activity is frequently increased by an average
of five- to eight-fold [18].
Another important role of CAV-1 is that of a modulator of mito-

genic signaling pathways. Several studies have reported an increase in
phosphatidylinositol-3-kinase (PI3K)/AKT signaling within human
cell culture and patient tissues that have elevated CAV-1 expression
[19–21]. One mechanism by which CAV-1 increases AKT activity is
to decrease the activity of negative regulatory phosphatases PP1 and
PP2A [20]. Li et al. [20] demonstrated that, in prostate cancer cells,
an association between the CAV-1 scaffolding domain and the cata-
lytic regions of PP1 and PP2A leads to reduced activity of these en-
zymes, thereby increasing the presence of phosphorylated AKT. They
also show that this is a functional change because downstream targets
of AKT are more frequently phosphorylated, all contributing to in-
creased cell survival and proliferation. The link between PP1/PP2A
and CAV-1 has thus far been limited to prostate cells and cardiomyo-
cytes [20,22]. We wish to explore whether this effect is similar in
colon cancer cells as well.
Recent findings indicate that caveolae may play an important role

in protease secretion, specifically demonstrated in the proteases uro-
kinase plasminogen activator (uPA) and cathepsin B [23,24]. Despite
its controversial role in cancer, it is widely accepted that CAV-1 can
modulate mitogenic signaling as well as protein trafficking, both of
which are relevant to KLK6 regulation. This study investigates
whether this CAV-1–dependent increase in secretion applies to an-
other protease, KLK6, as well. To evaluate the role of CAV-1 and
its kinase SRC in KLK6 regulation and KLK6 secretion, we used iso-
genic cells systems of which either CAV-1 or SRC expression and/or
activity were stably altered [24,25]. This study will demonstrate the
complex pathways involving CAV-1, SRC, AKT, and PP1/PP2A,
which influence both KLK6 expression and protein secretion.

Materials and Methods

Cell Culture
All cell culture reagents were purchased from Invitrogen Corp.

(Carlsbad, CA). HCT116 CAV-1 AS and CAV-1 Mock cells were
stably transfected with the pAnti–caveolin-1–IRES–hrGFP-1a–puro
and the pIRES–hrGFP-1a–puro vectors, respectively [24]. HCT116
SRC531 and Mock cells were stably transfected with the
pcDNASRC-531 or pcDNA3.1 vectors, respectively. HCT116
CAV-1 AS and CAV-1 Mock cells were maintained in DMEM sup-
plemented with 10% FBS and 1% penicillin/streptomycin with or
without selection antibiotics. Stably transfected clones were main-
tained in the supplemented DMEM with the addition of the follow-
ing selection agents: HCT116 CAV-1 AS and Mock – 25 μg/ml
puromycin. HCT116 SRC531 cells were maintained in McCoy’s
5a media supplemented with 10% FBS, 1% penicillin/streptomycin,
and 500 μg/ml G418.

Cell Treatment Conditions
For the AKT inhibition studies with LY294002 (Calbiochem, La

Jolla, CA), cells were plated at a concentration of 5.0 × 105 cells per
60-mm plate in normal media containing 10% FBS. Twenty-four
hours after plating, fresh media was added with the drug at a concen-
tration of 50 μM or vehicle control (DMSO; Sigma-Aldrich, Life
Science Research, St. Louis, MO). Twenty-four hours later, the
media and drug were removed and replaced with fresh media and
drug. Forty-eight hours after initial drug treatment, cell lysates, con-
ditioned media, and RNA were collected. All drug studies were done
in triplicate. The media used was DMEM supplemented with 10%
fetal bovine serum and 1% penicillin/streptomycin.

Real-Time Polymerase Chain Reaction
Reverse transcription (RT) was completed with TaqMan Reverse

Transcription Reagents Kit (Applied Biosystems, Foster City, CA).
One microgram of total RNA was transcribed into cDNA in a
50-μl reaction with random hexamers under the thermal condition
recommended by the protocol. Real-time polymerase chain reaction
(PCR) amplification was performed with a sequence detection system
(ABI PRISM 7700 SDS; Applied Biosystems), under the universal
thermal cycling conditions recommended by the Assay-on-Demand
products protocol. Each 50-μl real-time PCR reaction included 25 μl
of TaqMan Universal PCR master mix, 10 μl of the resulting cDNA
from the RT step, and 15 μl of the diluted primer and probe mixes
ordered from Assay-on-Demand products (Applied Biosystems). No
template controls were included in each plate to monitor the poten-
tial PCR contamination. Each cell line was tested in triplicate and
each reaction was run in duplicate. To determine the relative expres-
sion level of each target gene, the comparative CTmethod was used.
The CT value of the target gene was normalized by the endogenous
reference [ΔCT = CT(target) − CT(GAPDH)] and compared to a calibra-
tor, in our case, control RNA [ΔΔCT = ΔCT(target) − ΔCT(calibrator)].
The relative expression of each target gene was calculated using the
equation: 2−ΔΔCT.

Western Blot Analysis
Whole-cell lysates were collected by lysing on ice in radioim-

munoprecipitation assay buffer (PBS, 1% NP-40, 0.5% sodium
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deoxycholate, 0.1% SDS, 30 μg/ml aprotinin, 100 mM sodium or-
thovanidate, and 10 mg/ml PMSF). Samples were kept on ice for
30 minutes, followed by centrifugation at 14,000 rpm for 10 min-
utes. Supernatants were collected, and protein concentration was de-
termined using a colorimetric assay (DC Protein Assay; Bio-Rad,
Hercules, CA). Sixty microgram of cell lysate was loaded per lane
and run on a 12.5% SDS-PAGE gel. The proteins were transferred
electrophoretically to Hybond-C nitrocellulose membrane (Amer-
sham Pharmacia Biotech, Inc., Piscataway, NJ) overnight. Blots were
blocked in Blotto A (5% w/v nonfat dry milk, 0.1% Tween 20, and
Tris-buffered saline (TBS) consisting of 10 mM Tris–HCl, pH 8.0,
150 mM NaCl) for 1 hour at room temperature. CAV-1 and KLK6
antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and
flotillin-1 (Flot-1) antibody (BD Transduction Laboratories, Franklin
Lakes, NJ) were diluted in Blotto A at concentrations of 1:1000,
1:200, and 1:500, respectively. AKT, p-AKT, SRC, p-SRC, p-CAV-1,
PP1α, and PP2A-C subunit antibodies (Cell Signaling, Danvers, MA)
were diluted in 5% BSA in TTBS at a concentration of 1:1000. The
blots were washed in TBS/0.1% Tween 20. The primary antibodies
were detected with an anti–rabbit (CAV-1) or anti–goat (KLK6 ) im-
munoglobulin G antibody conjugated to HRP. Blots were washed as
described above, and protein was detected with an enhanced chemilu-
minescence detection reagent (GE Healthcare, Waukesha, WI).

ELISA for Secreted KLK6
An ELISA kit for the detection of human KLK6 was obtained

from Ibex (Quebec, Canada). The assay was performed according
to manufacturer’s protocol. Briefly, standards were prepared at con-
centrations of 0, 0.2, 0.5, 2.0, 5.0, 10.0, and 20.0 ng/ml to set a
standard concentration curve. Fifty microliters of either the standard
or the conditioned media was added to the precoated well and incu-
bated for 2 hours. The wells were washed six times with the provided
wash buffer. One hundred microliters of KLK6 antibody–biotin was
added to all the wells and incubated for 1 hour, followed by six
washes. One hundred microliters of streptavidin–HRP was added
and incubated for 30 minutes, followed by six washes. One hundred
microliters of tetramethylbenzidine substrate was added and incu-
bated for 30 minutes, followed by the addition of 100 μl of stop
solution. All incubations were carried out on a high-speed titer plate
shaker at room temperature. The plate was read at 490 nm within
10 minutes on an EL800 Universal Microplate Reader (Bio-Tek In-
struments, Inc., Winooski, VT).

Sucrose Gradient Cellular Fractionation
Lipid raft fractionation was performed using a detergent-free, al-

kaline lysis method as described previously [26]. Briefly, HCT116
cells (7 × 106 cells per 150-mm plate) were plated for 48 hours. Each
plate was then lysed with 2 ml of 500 mM sodium carbonate (pH
11.0). The lysate was sonicated for three 20-sec bursts using a Sonic
Vibra Cell sonicator (Sonics & Materials Inc., Newton, CT). The
lysate was then adjusted to 45% sucrose by mixing with equal vol-
umes of 90% sucrose prepared in Mes-buffered saline (MBS – 25 mM
Mes, pH 6.5, 0.15 M NaCl), and placed at the bottom of an ultra-
centrifuge tube. A 5% to 35% discontinuous sucrose gradient was
formed above (4 ml of 5% sucrose/4 ml of 35% sucrose; both in
MBS containing 250 mM sodium carbonate) and centrifuged at
39,000 rpm for 16 hours in an SW40-Ti rotor (Beckman Instruments,
Palo Alto, CA). A light-scattering band at the 5% to 35% sucrose in-

terface was observed. This fraction contains CAV-1/lipid raft proteins.
Twelve 1-ml fractions were collected from top to bottom of the tube.
For the detection of KLK6, CAV-1, and Flot-1 in the fractions, equal
volume from each fraction were loaded on a 12.5% SDS-PAGE gel
and visualized as described in the Western Blot Analysis section.
The films were scanned, and densitometry was carried out using the
Scion Imaging Quantification Software (Scion Corp., Frederick, MD).
For each individual protein, the density values in all 12 fractions were
added up. The values of CAV-1, KLK6, and Flot-1 in each single su-
crose gradient fraction were calculated as a percentage of their total
density value in all fractions.

Membrane and Cytosolic Fractionation
This method has been described previously [27]. Briefly, cells

were suspended in 10 mM Tris, pH 7.4, 1 mM EDTA, 200 mM
sucrose, and 1 mM PMSF, and then homogenized with a tight fitting
douncer. The nuclei were removed from the homogenate by centri-
fugation at 900g for 10 minutes at 4°C. The resulting supernatant
was centrifuged at 110,000g for 75 minutes at 4°C. The supernatant
was saved as a cytosolic fraction. The remaining membrane pellet was
solubilized in 10 mM Tris, pH 7.4, 1 mM EDTA, and 0.5% Triton
X-100 for a minimum of 1 hour on ice with intermittent vortexing,
followed by centrifugation at 13,000g for 10 minutes at 4°C. The
supernatant was considered as a membrane fraction.

Immunoprecipitation
The cytosolic and membrane fractions from HCT116 CAV-1

Mock and HCT116 CAV-1 AS cells were precleared with normal
rabbit protein A Agarose (Santa Cruz Biotechnology, Inc.) for 1 hour
at 4°C. CAV-1 was immunoprecipitated from precleared lysates with
polyclonal CAV-1 antibody (Santa Cruz Biotechnology, Inc.) over-
night at 4°C, in the presence of protein A Agarose. Immunoprecipi-
tated beads were washed four times, then boiled in SDS sample
buffer, separated by SDS-PAGE, and immunoblotted with KLK6
antibody (Santa Cruz Biotechnology, Inc.).

Results

KLK6 Expression and Secretion Are Decreased in the
Downregulated CAV-1 Cells

HCT116 cells stably transfected with a CAV-1 antisense vector
were confirmed to express a greatly reduced amount of CAV-1 than
the mock-transfected control cell line (Figure 1A). RNA was isolated
from HCT116 CAV-1 Mock and HCT116 CAV-1 AS cells after
48 hours of normal growth, in serum-containing media. As analyzed
by real-time RT–PCR using glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH ) primers as a control, KLK6 gene expression decreased
nine-fold in HCT116 CAV-1 AS cells compared to CAV-1 Mock
(Figure 1B). To evaluate KLK6 secretion, media was collected from
cells 24, 48, and 72 hours after plating in normal growth conditions.
Secretion was also significantly reduced at all time points in the
HCT116 CAV-1 AS cells (Figure 1C ).

KLK6 Localizes to CAV-1–Containing Membrane Fractions
in the Presence, But Not the Absence of CAV-1

Because CAV-1 expression influenced both KLK6 gene expression
and secretion in HCT116 cells, we explored the possibility that
KLK6 localizes to the caveolae of these cells. Sucrose gradients were
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used to fractionate whole-cell lysates into density-based fractions. All
fractions were analyzed for their KLK6 and CAV-1 content. Fractions
4 to 6 are most commonly enriched with CAV-1 and other lipid raft
plasma membrane proteins, such as Flot-1 [28,29]. In both the
HCT116 CAV-1 Mock cells and the CAV-1 AS cells, Flot-1 was ob-
served primarily in fractions 5 and 6 (Figure 2, A and B). As ex-
pected, CAV-1 was also seen in these fractions in the mock cells,
but not in the CAV-1 AS cells (Figure 2, A and B). Importantly,
the levels of KLK6 in fractions 5 and 6 of the HCT116 CAV-1 Mock
fractions were significantly higher than in the HCT116 CAV-1 AS
fractions, indicating that in the absence of CAV-1, the level of KLK6
localizing to lipid raft membrane domains is decreased (Figure 2, A
and B). The Western blots were quantified using densitometric anal-
ysis as described in Materials and Methods. The percentage of the
CAV-1, KLK6, and Flot-1 contents corresponding to each individual
fraction was plotted to show the distribution of these proteins in lipid
rafts (Figure 2, C and D). It is notable that, overall, there was more

KLK6 protein in the HCT116 CAV-1 Mock cells than in the CAV-1
AS cells, which is consistent with earlier data. The amount of KLK6
and Flot-1 localized to the caveolar fractions (fractions 4–7) was
calculated as a percentage of the total amount of protein present
(Table 1). In the HCT116 CAV-1 Mock cells, there was a 2.65-fold
increase in KLK6 in these fractions, compared to HCT116 CAV-1
AS cells. In contrast, Flot-1 localizes to the caveolar fractions to a
similar degree in the two cell lines (62.2% and 53.9%, respectively).
The ratio of KLK6 to Flot-1 was then calculated to determine the
relative percentage of KLK6 associated with lipid rafts. Taking values
normalized to the HCT116 CAV-1 Mock cells, there was a 56% de-
crease in KLK6 associated with lipid rafts in the HCT116 CAV-1
AS cells.

We also performed an immunoprecipitation experiment in the cy-
tosolic and crude plasma membrane fractions of HCT116 CAV-1
Mock and HCT116 CAV-1 AS cells to assess the possible interaction
of CAV-1 with KLK6. No KLK6 was detected in immunoprecipi-
tates from the cytosolic or membrane fractions using CAV-1 anti-
body, showing that KLK6 was not directly associated with CAV-1
(Figure 2E ). Western blot analysis of the level of KLK6 protein in
the cytosolic and membrane fractions revealed the two-fold decrease
in the KLK6 protein level in the cytosolic fraction of HCT116 CAV-
1 AS cells compared to HCT116 CAV-1 Mock controls. Moreover,
the levels of KLK6 in the membrane fraction of HCT116 CAV-1 AS
cells was more than 4.5 times less than in the membrane fraction of
HCT116 CAV-1 Mock cells (Figure 2E ). This result is consistent
with our data obtained using CAV-1–enriched membrane fractions
showing a distinct effect of CAV-1 on the KLK6 intracellular level
and distribution.

KLK6 Secretion Is Reduced in the Presence of Constitutively
Active SRC

To determine whether KLK6 is sensitive to processes in the cell
which alter CAV-1 activity, we used HCT116 cells stably transfected
to express constitutively active SRC. These cells express SRC531, a
mutant form of SRC which is insensitive to negative regulation [25].
CAV-1 is a substrate for SRC kinases. We first demonstrated that the
HCT116 SRC531 cells, compared to the HCT116 SRC-mock cells,
had elevated amounts of phospho-SRC as well as phospho-CAV-1
(Figure 3A). KLK6 gene expression was not significantly altered
between the HCT116 SRC-mock and SRC531 cell lines (data not
shown). KLK6 secretion in these cells was significantly decreased by
nearly half in the presence of the constitutively active SRC531 (Fig-
ure 3B). These data suggest that the SRC-induced phosphorylation
of CAV-1 ultimately leads to the decrease in secretion of KLK6.

CAV-1 Downregulation Leads to Suppression of AKT
Phosphorylation through an Increase in PP1 and PP2A

As demonstrated by the change in KLK6 mRNA levels in the
HCT116 CAV-1 Mock versus CAV-1 AS cells, there is clearly some
factor within these cells altering KLK6 gene expression. Based on
published and unpublished data from our laboratory, as well as sev-
eral previously published studies which correlate an increase in CAV-
1 expression with an increase in AKT activity [19,20], we explored
AKT-dependent signaling as a mechanism controlling increased
KLK6 expression. We demonstrated that the HCT116 CAV-1 Mock
cells had more phospho-AKT than do the HCT116 CAV-1 AS cells
(Figure 4A). As indicated by previous studies, the CAV-1–dependent
increase in phospho-AKT levels may involve a decrease in levels and

Figure 1. Downregulation of CAV-1 in HCT116 cells decreases the
levels of KLK6 mRNA and KLK6 secretion. (A) Whole-cell lysates
were collected from HCT116 CAV-1 mock and CAV-1 AS cells
after 48 hours of growth under normal conditions (regular media
with 10% FBS). Western blot analysis for CAV-1 was performed
and β-actin was used as a loading control. (B) Real-time reverse
transcription–PCR analysis was performed on RNA isolated from
cells after 48 hours of growth under normal conditions (*P ≤ .05).
(C) ELISA analysis for secreted KLK6 in media collected from
HCT116 CAV-1 mock and AS cells 24, 48, and 72 hours after plat-
ing in normal growth conditions (*P ≤ .02).
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activity of PP1 and/or PP2A [20]. The levels of PP1 and PP2A in the
whole-cell lysates of HCT116 CAV-1 Mock and HCT116 CAV-1
AS cells were determined by Western blot analysis. Reduced levels
of PP1 and PP2A were observed in HCT116 CAV-1 Mock cells in

comparison to HCT116 CAV-1 AS cells (Figure 4B). These data cor-
relate well with the relative amounts of phospho-AKT observed in
these cell lines (Figure 4A), wherein the cells with more phospho-
AKT have less PP1 and PP2A expression. The levels of PP1 and
PP2A also are inversely correlated to levels of KLK6 expression be-
cause the cells that express less PP1 and PP2A express more KLK6
(Figure 1B).

Pharmacological Inhibition of AKT Leads to Reduced KLK6
Expression and KLK6 Secretion

To further demonstrate that the AKT pathway positively influ-
ences KLK6, we inhibited AKT to observe changes in KLK6 expres-
sion. To disrupt the AKT signaling pathway, we used the small

Figure 2. Sucrose gradient cell fractionation reveals that KLK6 associates with lipid raft domains in CAV-1 expressing cells. (A and B) Equal
amounts from each of the 12 sucrose gradient fractions obtained from HCT116 CAV-1 Mock cells (A) and HCT116 CAV-1 AS cells (B) were
loaded and run on a 12.5% SDS-PAGE gel, and immunoblots for KLK6, CAV-1, and Flot-1 were performed. (C) Protein localization on
sucrose gradient in HCT116 CAV-1 Mock cells. (D) Protein localization on sucrose gradient in HCT116 CAV-1 AS cells. (E) KLK6 is asso-
ciated with the membrane fraction but does not interact with CAV-1. CAV-1 was immunoprecipitated from the cytosolic (C) and membrane
(M) fractions isolated from HCT116 CAV-1 Mock and CAV-1 AS cells as described in Materials and Methods. Western blot analysis for
KLK6, CAV-1, and β-actin (used as a loading control) was performed in immunoprecipitates (IP:CAV-1) and in unprecipitated whole fractions
(WF). For immunoprecipitates, 500 μg of protein was used; for whole fractions, each lane was loaded with 80 μg of protein.

Table 1. Densitometric Quantification of the Proportion of KLK6 Associated with Lipid Rafts.

Cell Type Percentage of KLK6
in Caveolar Fractions
(Fractions 4–7)

Percentage of Flot-1
in Caveolar Fractions
(Fractions 4–7)

Ratio KLK6/Flot-1
(Normalized to
HCT116 CAV-1
Mock Cells)

HCT116 CAV-1 Mock 25.8 62.3 0.41 (1.0)
HCT116 CAV-1 AS 9.7 53.9 0.18 (0.44)
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molecule AKT inhibitor, LY294002, at a concentration of 50 μM
following the drug treatment protocol outlined in the Materials
and Methods section. Real-time PCR analysis of cells treated with
LY294002 reveals that KLK6 mRNA levels are significantly reduced
in both the HCT116 CAV-1 Mock and CAV-1 AS cells (Figure 5A).

Reflecting the drop in mRNA levels, the amount of secreted protein
is also significantly reduced (Figure 5B). These data indicate that the
AKT signaling pathway is a likely mechanism by which CAV-1 is in-
fluencing KLK6 gene expression.

Discussion
Although aberrant expression of KLK6 has been demonstrated in

numerous studies, very little is known regarding the regulation of its
expression or secretion. We have demonstrated here that KLK6 gene
regulation is influenced by AKT signaling. AKT appears to be more
active in the presence of caveolae because of the CAV-1–dependent
decrease of the negative regulators PP1 and PP2A. Once synthesized,
KLK6 protein is secreted, a process that is positively influenced by
CAV-1. Although it has been reported in cultured endothelial, me-
sangial, and smooth muscle cells that different molecules might be
linked to caveolae-enriched membrane domains through interactions
with CAV-1 [30], we did not observe the direct association of CAV-1
and KLK6 in colon cancer cells. As has been shown previously, SRC,
a CAV-1 kinase, can destabilize caveolae through the phosphoryla-
tion of CAV-1, thereby decreasing KLK6 secretion [15–17]. These
findings are summarized in our proposed model (Figure 6).

There are key regulatory sites within the proximal KLK6 promoter
region that include putative binding sites for Elk-1, AP-1, and SP-1,
as well as two E-box sequences [26]. The functionality of the SP-1
binding site was confirmed using the enzyme mobility shift assay
[26]. This study also showed that deletion of the portion of the
promoter containing the AP-1 and E-box sequences completely
abolishes promoter reporter transactivation [26]. These KLK6 pro-
moter reporter studies were performed in MCF-7 breast cancer cells,
and it will be important to perform these experiments in our colon
cancer model systems to determine whether this type of regulation is
conserved among cells of different tissue origins. Upregulation of
AKT activity has been shown to increase downstream AP-1 signaling
[31]. We have observed significantly increased AP-1 promoter reporter
activity in the HCT116 CAV-1 Mock compared to the HCT116

Figure 3. HCT116 cells with constitutively active SRC have elevated levels of phosphorylated CAV-1, leading to less KLK6 secretion. (A)
Western blot analysis was performed on whole-cell lysates from HCT116 SRC-mock and HCT116 SRC531 cells collected 48 hours after
plating in normal growth conditions. (B) ELISA analysis for secreted KLK6 was performed on conditioned media collected from HCT116
SRC-mock and HCT116 SRC531 cells 48 hours after plating in normal growth conditions (*P ≤ .001).

Figure 4. Increased KLK6 expression correlates to levels of phospho-
AKT and the phosphatases PP1 and PP2A. (A) Western blot analyses
of phospho-AKT and total AKT were performed on whole-cell lysates
collected 48 hours after plating in normal growth conditions. (B)
Western blot analyses for PP1 and PP2A were performed on
whole-cell lysates collected from cells 48 hours after plating in nor-
mal growth conditions. β-Actin was used as a loading control.
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CAV-1 AS cells (unpublished data). This indicates a potentially im-
portant avenue of study to determine whether AP-1 signaling also
plays a role in KLK6 expression in colon cell model systems. In ad-
dition to the putative AP-1 regulation, the Elk-1 and SP-1 sites may
also play a pivotal role in KLK6 gene regulation. Studies from our
laboratory show that inhibition of the mitogen-activated protein ki-
nase kinase (MEK)/extracellular signal–regulated kinase (ERK) path-
way with the small molecule inhibitor PD98059 also reduces KLK6
expression, although to a lesser degree than AKT inhibition.

Analysis of cancerous and surrounding noncancerous human tis-
sues reveals that the expression of CAV-1 is elevated in several types
of cancers [32,33]. CAV-1 was shown to be elevated in colonic ade-
nocarcinoma compared to both normal colonic mucosa and colon
adenoma tissue [32]. This suggests an increase in CAV-1 expression
with advancing tumor grade. Along those same lines, Hung et al.
[33] demonstrate that through the course of oral carcinogenesis,
the percentage of tissues with positive staining for CAV-1 increases
along with the advancing stage of the cancer, except in the most
advanced stage of metastatic oral squamous cell carcinoma, possibly
indicating a biphasic expression pattern. These counter-intuitive find-
ings underscore the fact that the state of CAV-1 expression is a con-
troversial topic among cancer researchers. Central to this study, CAV-1
expression in several colon cancer cell lines has been analyzed. As we
have demonstrated, HCT116 cells produce significant amounts of

CAV-1, whereas two other colon cancer cell lines, HT29 and Caco2,
produce very little or virtually none, respectively. Interestingly, these
levels of CAV-1 expression correlate with the varying growth rates of
these cell lines, with HCT116 cells having the fastest growth rate and
Caco2 cells the slowest [34]. Increases in CAV-1 expression are also
observed in azoxymethane induced rat colon adenocarcinomas, com-
pared to surrounding normal mucosa [34].

Upregulation of CAV-1 in cancer has many implications due to its
diverse roles in cells. It modulates several signaling pathway, likely
due to its interaction with signaling and regulatory proteins such
as PP1, PP2A and RAS [19–21,23,28,35]. When implicating protein
phosphatases such as PP1 and PP2A as key regulatory proteins in a
pathway, it is important to acknowledge their promiscuous nature,
owing to the fact that there are far fewer protein phosphatases than
there are kinases. For example, the PP2A family of phosphatases has
many substrates, including Raf, MEK, ERK, and AKT, among others
[22,36]. However, substrate specificity has been demonstrated
through modulation of the variable B regulatory subunit of PP2A.
PP2A proteins are composed of a scaffolding subunit (A), a regula-
tory subunit (B), and a catalytic subunit (C) [36]. It was shown that
PP2A/B′ heterotrimers specifically dephosphorylated AKT, whereas
PP2A/Bα and PP2A/Bδ act on the ERK pathway kinases [36]. Thus,
an overall increase in PP2A may affect certain pathways more than
others. A study done in cardiomyocytes, using subcellular fraction
colocalization as well as immunoprecipitation, demonstrated that
PP2A and CAV-1 associate in cells [22]. It has not yet been deter-
mined which specific PP2A isoforms CAV-1 affects.

In addition to its effects on mitogenic signaling, recent research,
supported by the current study, demonstrates that protease secretion

Figure 5. Inhibition of AKT leads to decreased KLK6 mRNA and se-
creted KLK6 protein. (A) Real-time PCR analysis for the detection of
KLK6 mRNA was performed using RNA isolated from cells treated
with either the AKT inhibitor LY294002 or the vehicle control DMSO
(*P ≤ .03). The exact treatment protocol is outlined in the Materials
and Methods section. (B) ELISA analysis was performed on condi-
tioned media collected after 48 hours of treatment with LY294002
(*P ≤ .01).

Figure 6. Proposed model of KLK6 expression and secretions: This
proposed model unites the pathways regulating KLK6 gene expres-
sion and KLK6 secretion. We demonstrate that AKT plays the most
pivotal role in KLK6 gene expression. AKT activity is negatively reg-
ulated by phosphatases PP1 and PP2A, which are in turn controlled
at least in part by CAV-1. Colon cancer cells, which express CAV-1,
express and secrete significantly more KLK6 than isogenic cells
lines lacking CAV-1 expression. SRC kinase phosphorylates CAV-1,
and this phosphorylation causes the decrease in KLK6 secretion.
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can be mediated by CAV-1 [23,24]. The expression and secretion of
cathepsin B, a cysteine protease, uPA, a serine protease, and its recep-
tor uPAR are decreased in HCT116 CAV-1 AS cells compared to
HCT116 CAV-1 Mock cells [24]. To confirm an effect on tumori-
genic phenotypes, this study also demonstrated a decrease in the deg-
radation of the ECM protein collagen IV as well as diminished
invasion through Matrigel by the HCT116 CAV-1 AS cells [24]. In-
creased expression of cathepsin B has been shown to be predictive of
decreased overall survival rates among colon cancer patients, and up-
regulation of uPA/uPAR expression is known to increase tumorigenic
phenotypes such as chemotaxis and evasion of apoptosis [24,37]. A
recent study determined that overexpression of CAV-1 in prostate
cancer correlated with more aggressive tumors (as determined by
Gleason score), high preoperative prostate-specific antigen (KLK3)
levels, and a high rate of cancer recurrence after a radical prostatec-
tomy [38]. Although CAV-1 has previously been shown to enhance
protease secretion, the novel findings of this study demonstrate a
CAV-1–dependent upregulation of both KLK6 expression and
KLK6 secretion in colon cancer.
In summary, CAV-1 influences KLK6 gene expression through its

influence on PP1/PP2A and AKT. CAV-1 directly enhances protein
secretion in our cell model system by facilitating KLK6 secretion
through the caveolae. Determining when and why KLK6 overexpres-
sion will occur in colon cancer could have several very important im-
plications. KLK6 has the potential to play a role as a serum marker
for the presence and/or progression of several types of cancer, thus
knowing exactly when and why it is upregulated is essential. KLK6
is also able to degrade ECM components, leading to more virulent
tumor cell invasiveness [1]. Understanding how KLK6 is secreted
could lead to therapeutic efforts to block that process, thereby con-
ferring a less invasive phenotype to those cells.

Acknowledgments
We thank Rosalyn Irby and Timothy Yeatman for the kind gift of the
HCT116 SRC531/Mock cells. Special thanks go to David Stringer
for technical assistance.

References
[1] Borgono CA and Diamandis EP (2004). The emerging roles of human tissue

kallikreins in cancer. Nat Rev Cancer 4, 876–890.
[2] Diamandis EP, Scorilas A, Fracchioli S, Van Gramberen M, De Bruijn H,

Henrik A, Soosaipillai A, Grass L, Yousef GM, Stenman UH, et al. (2003).
Human kallikrein 6 (KLK6): a new potential serum biomarker for diagnosis
and prognosis of ovarian carcinoma. J Clin Oncol 21, 1035–1043.

[3] Santin AD, Diamandis EP, Bellone S, Soosaipillai A, Cane S, Palmieri M,
Burnett A, Roman JJ, and Pecorelli S (2005). Human kallikrein 6: a new po-
tential serum biomarker for uterine serous papillary cancer. Clin Cancer Res
11, 3320–3325.

[4] Nagahara H, Mimori K, Utsunomiya T, Barnard GF, Ohira M, Hirakawa K,
and Mori M (2005). Clinicopathologic and biological significance of kallikrein
6 overexpression in human gastric cancer. Clin Cancer Res 11, 6800–6806.

[5] Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Inoue H, Nagahara H,
Murayama S, and Mori M (2005). Clinical significance of human kallikrein
gene 6 messenger RNA expression in colorectal cancer. Clin Cancer Res 11,
2889–2893.

[6] Ghosh MC, Grass L, Soosaipillai A, Sotiropoulou G, and Diamandis EP (2004).
Human kallikrein 6 degrades extracellular matrix proteins and may enhance the
metastatic potential of tumour cells. Tumour Biol 25, 193–199.

[7] Prezas P, Arlt MJ, Viktorov P, Soosaipillai A, Holzscheiter L, Schmitt M, Talieri
M, Diamandis EP, Kruger A, and Magdolen V (2006). Overexpression of the

human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phe-
notype of ovarian cancer cells. Biol Chem 387, 807–811.

[8] Wolf WC, Evans DM, Chao L, and Chao J (2001). A synthetic tissue kallikrein
inhibitor suppresses cancer cell invasiveness. Am J Pathol 159, 1797–1805.

[9] Stan RV (2005). Structure of caveolae. Biochim Biophys Acta 1746, 334–348.
[10] Martin S and Parton RG (2005). Caveolin, cholesterol, and lipid bodies. Semin

Cell Dev Biol 16, 163–174.
[11] Le Lay S and Kurzchalia TV (2005). Getting rid of caveolins: phenotypes of

caveolin-deficient animals. Biochim Biophys Acta 1746, 322–333.
[12] Schwencke C, Braun-Dullaeus RC, Wunderlich C, and Strasser RH (2006).

Caveolae and caveolin in transmembrane signaling: implications for human dis-
ease. Cardiovasc Res 70, 42–49.

[13] Williams TM and Lisanti MP (2005). Caveolin-1 in oncogenic transformation,
cancer, and metastasis. Am J Physiol Cell Physiol 288, C494–C506.

[14] Nabi IR and Le PU (2003). Caveolae/raft–dependent endocytosis. J Cell Biol
161, 673–677.

[15] Cao H, Courchesne WE, and Mastick CC (2002). A phosphotyrosine-
dependent protein interaction screen reveals a role for phosphorylation of
caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem
277, 8771–8774.

[16] Li S, Seitz R, and Lisanti MP (1996). Phosphorylation of caveolin by Src tyro-
sine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src
in vivo. J Biol Chem 271, 3863–3868.

[17] Nomura R and Fujimoto T (1999). Tyrosine-phosphorylated caveolin-1: immu-
nolocalization and molecular characterization. Mol Biol Cell 10, 975–986.

[18] Irby RB and Yeatman TJ (2000). Role of Src expression and activation in hu-
man cancer. Oncogene 19, 5636–5642.

[19] Kim HA, Kim KH, and Lee RA (2006). Expression of caveolin-1 is correlated
with Akt-1 in colorectal cancer tissues. Exp Mol Pathol 80, 165–170.

[20] Li L, Ren CH, Tahir SA, Ren C, and Thompson TC (2003). Caveolin-1 main-
tains activated Akt in prostate cancer cells through scaffolding domain binding
site interactions with and inhibition of serine/threonine protein phosphatases
PP1 and PP2A. Mol Cell Biol 23, 9389–9404.

[21] Shack S, Wang XT, Kokkonen GC, Gorospe M, Longo DL, and Holbrook NJ
(2003). Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt
pathway increases arsenite cytotoxicity. Mol Cell Biol 23, 2407–2414.

[22] Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, Benito M, Nebreda AR,
and Porras A (2007). Negative regulation of Akt activity by p38alpha MAP ki-
nase in cardiomyocytes involves membrane localization of PP2A through inter-
action with caveolin-1. Cell Signal 19, 62–74.

[23] Cavallo-Medved D, Dosescu J, Linebaugh BE, Sameni M, Rudy D, and Sloane
BF (2003). Mutant K-ras regulates cathepsin B localization on the surface of
human colorectal carcinoma cells. Neoplasia 5, 507–519.

[24] Cavallo-Medved D, Mai J, Dosescu J, Sameni M, and Sloane BF (2005).
Caveolin-1 mediates the expression and localization of cathepsin B, pro–
urokinase plasminogen activator and their cell-surface receptors in human colo-
rectal carcinoma cells. J Cell Sci 118, 1493–1503.

[25] Irby RB and Yeatman TJ (2002). Increased Src activity disrupts cadherin/
catenin–mediated homotypic adhesion in human colon cancer and transformed
rodent cells. Cancer Res 62, 2669–2674.

[26] Pampalakis G and Sotiropoulou G (2006). Multiple mechanisms underlie the
aberrant expression of the human kallikrein 6 gene in breast cancer. Biol Chem
387, 773–782.

[27] Nagamatsu S, Kornhauser JM, Burant CF, Seino S, Mayo KE, and Bell GI
(1992). Glucose transporter expression in brain. cDNA sequence of mouse
GLUT3, the brain facilitative glucose transporter isoform, and identification
of sites of expression by in situ hybridization. J Biol Chem 267, 467–472.

[28] Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, and Lisanti MP
(1996). Co-purification and direct interaction of Ras with caveolin, an integral
membrane protein of caveolae microdomains. Detergent-free purification of ca-
veolae microdomains. J Biol Chem 271, 9690–9697.

[29] Rajendran L, Le Lay S, and Illges H (2007). Raft association and lipid
droplet targeting of flotillins are independent of caveolin. Biol Chem 388,
307–314.

[30] Peng F, Wu D, Ingram AJ, Zhang B, Gao B, and Krepinsky JC (2007). RhoA
activation in mesangial cells by mechanical strain depends on caveolae and
caveolin-1 interaction. J Am Soc Nephrol 18, 189–198.

[31] Peloponese JM Jr. and Jeang KT (2006). Role for Akt/protein kinase B and ac-
tivator protein-1 in cellular proliferation induced by the human T-cell leukemia
virus type 1 tax oncoprotein. J Biol Chem 281, 8927–8938.

Neoplasia Vol. 10, No. 2, 2008 Kallikrein 6 Regulation in Colon Cancer Henkhaus et al. 147



[32] Fine SW, Lisanti MP, Galbiati F, and Li M (2001). Elevated expression of ca-
veolin-1 in adenocarcinoma of the colon. Am J Clin Pathol 115, 719–724.

[33] Hung KF, Lin SC, Liu CJ, Chang CS, Chang KW, and Kao SY (2003). The
biphasic differential expression of the cellular membrane protein, caveolin-1, in
oral carcinogenesis. J Oral Pathol Med 32, 461–467.

[34] Patlolla JM, Swamy MV, Raju J, and Rao CV (2004). Overexpression of caveolin-1
in experimental colon adenocarcinomas and human colon cancer cell lines. Oncol
Rep 11, 957–963.

[35] Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, and Lisanti
MP (1998). Caveolin-mediated regulation of signaling along the p42/44 MAP

kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett
428, 205–211.

[36] Van Kanegan MJ, Adams DG, Wadzinski BE, and Strack S (2005). Distinct
protein phosphatase 2A heterotrimers modulate growth factor signaling to ex-
tracellular signal–regulated kinases and Akt. J Biol Chem 280, 36029–36036.

[37] Crippa MP (2007). Urokinase-type plasminogen activator. Int J Biochem Cell
Biol 39, 690–694.

[38] Karam JA, Lotan Y, Roehrborn CG, Ashfaq R, Karakiewicz PI, and Shariat SF
(2007). Caveolin-1 overexpression is associated with aggressive prostate cancer
recurrence. Prostate 67, 614–622.

148 Kallikrein 6 Regulation in Colon Cancer Henkhaus et al. Neoplasia Vol. 10, No. 2, 2008


	University of Windsor
	Scholarship at UWindsor
	2008

	Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells.
	Rebecca S. Henkhaus
	Upal Kunal Basu Roy
	Dora Cavallo-Medved
	Bonnie F. Sloane
	Recommended Citation


	neo07817 143..151

