181 research outputs found

    Diarylethene-modified nucleotides for switching optical properties in DNA

    Get PDF
    Diarylethenes were attached to the 5-position of 2’-deoxyuridine in order to yield three different photochromic nucleosides. All nucleosides were characterized with respect to their absorption and photochromic properties. Based on these results, the most promising photochromic DNA base modification was incorporated into representative oligonucleotides by using automated phosphoramidite chemistry. The switching of optical properties in DNA can be achieved selectively at 310 nm (forward) and 450 nm (backward); both wavelengths are outside the normal nucleic acid absorption range. Moreover, this nucleoside was proven to be photochemically stable and allows switching back and forth several times. These results open the way for the use of diarylethenes as photochromic compounds in DNA-based architectures

    Gapless Color Superconductivity

    Full text link
    We present the dispersion relations for quasiparticle excitations about the color-flavor locked ground state of QCD at high baryon density. In the presence of condensates which pair light and strange quarks there need not be an energy gap in the quasiparticle spectrum. This raises the possibility of gapless color superconductivity, with a Meissner effect but no minimum excitation energy. Analysis within a toy model suggests that gapless color superconductivity may occur only as a metastable phase.Comment: 4 pages, Revtex, eps figures include

    Illuminating interfaces between phases of a U(1) x U(1) gauge theory

    Full text link
    We study reflection and transmission of light at the interface between different phases of a U(1) x U(1) gauge theory. On each side of the interface, one can choose a basis so that one generator is free (allowing propagation of light), and the orthogonal one may be free, Higgsed, or confined. However, the basis on one side will in general be rotated relative to the basis on the other by some angle alpha. We calculate reflection and transmission coefficients for both polarizations of light and all 8 types of boundary, for arbitrary alpha. We find that an observer measuring the behavior of light beams at the boundary would be able to distinguish 4 different types of boundary, and we show how the remaining ambiguity arises from the principle of complementarity (indistinguishability of confined and Higgs phases) which leaves observables invariant under a global electric/magnetic duality transformation. We also explain the seemingly paradoxical behavior of Higgs/Higgs and confined/confined boundaries, and clarify some previous arguments that confinement must involve magnetic monopole condensation.Comment: RevTeX, 12 page

    Quark description of nuclear matter

    Full text link
    We discuss the role of an adjoint chiral condensate for color superconducting quark matter. Its presence leads to color-flavor locking in two-flavor quark matter. Color is broken completely as well as chiral symmetry in the two-flavor theory with coexisting adjoint quark-antiquark and antitriplet quark-quark condensates. The qualitative properties of this phase match the properties of ordinary nuclear matter without strange baryons. This complements earlier proposals by Schafer and Wilczek for a quark description of hadronic phases. We show for a class of models with effective four-fermion interactions that adjoint chiral and diquark condensates do not compete, in the sense that simultaneous condensation occurs for sufficiently strong interactions in the adjoint chiral channel.Comment: 15 pages, 3 figure

    Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance

    Full text link
    We investigate the superfluid phase transition and effects of mass imbalance in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an cold Fermi gas. We point out that the Gaussian fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the TT-matrix theory, that are now widely used to study strong-coupling physics of cold Fermi gases, give unphysical results in the presence of mass imbalance. To overcome this problem, we extend the TT-matrix theory to include higher-order pairing fluctuations. Using this, we examine how the mass imbalance affects the superfluid phase transition. Since the mass imbalance is an important key in various Fermi superfluids, such as 40^{40}K-6^6Li Fermi gas mixture, exciton condensate, and color superconductivity in a dense quark matter, our results would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201

    Dense quark matter in compact stars

    Full text link
    The densest predicted state of matter is colour-superconducting quark matter, in which quarks near the Fermi surface form a condensate of Cooper pairs. This form of matter may well exist in the core of compact stars, and the search for signatures of its presence is an ongoing enterprise. Using a bag model of quark matter, I discuss the effects of colour superconductivity on the mass-radius relationship of compact stars, showing that colour superconducting quark matter can occur in compact stars at values of the bag constant where ordinary quark matter would not be allowed. The resultant ``hybrid'' stars with colour superconducting quark matter interior and nuclear matter surface have masses in the range 1.3-1.6 Msolar and radii 8-11 km. Once perturbative corrections are included, quark matter can show a mass-radius relationship very similar to that of nuclear matter, and the mass of a hybrid star can reach 1.8 \Msolar.Comment: 11 pages, for proceedings of SQM 2003 conference; references added, abstract reworde

    Angular Momentum Mixing in Crystalline Color Superconductivity

    Get PDF
    In crystalline color superconductivity, quark pairs form at non-zero total momentum. This crystalline order potentially enlarges the domain of color superconductivity in cold dense quark matter. We present a perturbative calculation of the parameters governing the crystalline phase and show that this is indeed the case. Nevertheless, the enhancement is modest, and to lowest order is independent of the strength of the color interaction.Comment: 9 pages, 2 figures, Revte

    QCD-like Theories at Finite Baryon and Isospin Density

    Get PDF
    We use 2-color QCD as a model to study the effects of simultaneous presence of chemical potentials for isospin charge, ÎĽI\mu_I, and for baryon number, ÎĽB\mu_B. We determine the phase diagrams for 2 and 4 flavor theories using the method of effective chiral Lagrangians at low densities and weak coupling perturbation theory at high densities. We determine the values of various condensates and densities as well as the spectrum of excitations as functions of ÎĽI\mu_I and ÎĽB\mu_B. A similar analysis of QCD with quarks in the adjoint representation is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase of inhomogeneous condensation (Fulde-Ferrel-Larkin-Ovchinnikov phase) in the 2 colour 2 flavor theory, while we do not expect it the 4 flavor case or in other realizations of QCD with a positive measure.Comment: 17 pages, 14 figure

    Thermodynamics of two-colour QCD and the Nambu Jona-Lasinio model

    Full text link
    We investigate two-flavour and two-colour QCD at finite temperature and chemical potential in comparison with a corresponding Nambu and Jona-Lasinio model. By minimizing the thermodynamic potential of the system, we confirm that a second order phase transition occurs at a value of the chemical potential equal to half the mass of the chiral Goldstone mode. For chemical potentials beyond this value the scalar diquarks undergo Bose condensation and the diquark condensate is nonzero. We evaluate the behaviour of the chiral condensate, the diquark condensate, the baryon charge density and the masses of scalar diquark, antidiquark and pion, as functions of the chemical potential. Very good agreement is found with lattice QCD (N_c=2) results. We also compare with a model based on leading-order chiral effective field theory.Comment: 24 pages, 12 figure
    • …
    corecore