181 research outputs found
Diarylethene-modified nucleotides for switching optical properties in DNA
Diarylethenes were attached to the 5-position of 2’-deoxyuridine in order to yield three different photochromic nucleosides. All nucleosides were characterized with respect to their absorption and photochromic properties. Based on these results, the most promising photochromic DNA base modification was incorporated into representative oligonucleotides by using automated phosphoramidite chemistry. The switching of optical properties in DNA can be achieved selectively at 310 nm (forward) and 450 nm (backward); both wavelengths are outside the normal nucleic acid absorption range. Moreover, this nucleoside was proven to be photochemically stable and allows switching back and forth several times. These results open the way for the use of diarylethenes as photochromic compounds in DNA-based architectures
Gapless Color Superconductivity
We present the dispersion relations for quasiparticle excitations about the
color-flavor locked ground state of QCD at high baryon density. In the presence
of condensates which pair light and strange quarks there need not be an energy
gap in the quasiparticle spectrum. This raises the possibility of gapless color
superconductivity, with a Meissner effect but no minimum excitation energy.
Analysis within a toy model suggests that gapless color superconductivity may
occur only as a metastable phase.Comment: 4 pages, Revtex, eps figures include
Illuminating interfaces between phases of a U(1) x U(1) gauge theory
We study reflection and transmission of light at the interface between
different phases of a U(1) x U(1) gauge theory. On each side of the interface,
one can choose a basis so that one generator is free (allowing propagation of
light), and the orthogonal one may be free, Higgsed, or confined. However, the
basis on one side will in general be rotated relative to the basis on the other
by some angle alpha. We calculate reflection and transmission coefficients for
both polarizations of light and all 8 types of boundary, for arbitrary alpha.
We find that an observer measuring the behavior of light beams at the boundary
would be able to distinguish 4 different types of boundary, and we show how the
remaining ambiguity arises from the principle of complementarity
(indistinguishability of confined and Higgs phases) which leaves observables
invariant under a global electric/magnetic duality transformation. We also
explain the seemingly paradoxical behavior of Higgs/Higgs and confined/confined
boundaries, and clarify some previous arguments that confinement must involve
magnetic monopole condensation.Comment: RevTeX, 12 page
Quark description of nuclear matter
We discuss the role of an adjoint chiral condensate for color superconducting
quark matter. Its presence leads to color-flavor locking in two-flavor quark
matter. Color is broken completely as well as chiral symmetry in the two-flavor
theory with coexisting adjoint quark-antiquark and antitriplet quark-quark
condensates. The qualitative properties of this phase match the properties of
ordinary nuclear matter without strange baryons. This complements earlier
proposals by Schafer and Wilczek for a quark description of hadronic phases. We
show for a class of models with effective four-fermion interactions that
adjoint chiral and diquark condensates do not compete, in the sense that
simultaneous condensation occurs for sufficiently strong interactions in the
adjoint chiral channel.Comment: 15 pages, 3 figure
Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance
We investigate the superfluid phase transition and effects of mass imbalance
in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation)
crossover regime of an cold Fermi gas. We point out that the Gaussian
fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the -matrix
theory, that are now widely used to study strong-coupling physics of cold Fermi
gases, give unphysical results in the presence of mass imbalance. To overcome
this problem, we extend the -matrix theory to include higher-order pairing
fluctuations. Using this, we examine how the mass imbalance affects the
superfluid phase transition. Since the mass imbalance is an important key in
various Fermi superfluids, such as K-Li Fermi gas mixture, exciton
condensate, and color superconductivity in a dense quark matter, our results
would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201
Dense quark matter in compact stars
The densest predicted state of matter is colour-superconducting quark matter,
in which quarks near the Fermi surface form a condensate of Cooper pairs. This
form of matter may well exist in the core of compact stars, and the search for
signatures of its presence is an ongoing enterprise. Using a bag model of quark
matter, I discuss the effects of colour superconductivity on the mass-radius
relationship of compact stars, showing that colour superconducting quark matter
can occur in compact stars at values of the bag constant where ordinary quark
matter would not be allowed. The resultant ``hybrid'' stars with colour
superconducting quark matter interior and nuclear matter surface have masses in
the range 1.3-1.6 Msolar and radii 8-11 km. Once perturbative corrections are
included, quark matter can show a mass-radius relationship very similar to that
of nuclear matter, and the mass of a hybrid star can reach 1.8 \Msolar.Comment: 11 pages, for proceedings of SQM 2003 conference; references added,
abstract reworde
Angular Momentum Mixing in Crystalline Color Superconductivity
In crystalline color superconductivity, quark pairs form at non-zero total
momentum. This crystalline order potentially enlarges the domain of color
superconductivity in cold dense quark matter. We present a perturbative
calculation of the parameters governing the crystalline phase and show that
this is indeed the case. Nevertheless, the enhancement is modest, and to lowest
order is independent of the strength of the color interaction.Comment: 9 pages, 2 figures, Revte
QCD-like Theories at Finite Baryon and Isospin Density
We use 2-color QCD as a model to study the effects of simultaneous presence
of chemical potentials for isospin charge, , and for baryon number,
. We determine the phase diagrams for 2 and 4 flavor theories using the
method of effective chiral Lagrangians at low densities and weak coupling
perturbation theory at high densities. We determine the values of various
condensates and densities as well as the spectrum of excitations as functions
of and . A similar analysis of QCD with quarks in the adjoint
representation is also presented. Our results can be of relevance for lattice
simulations of these theories. We predict a phase of inhomogeneous condensation
(Fulde-Ferrel-Larkin-Ovchinnikov phase) in the 2 colour 2 flavor theory, while
we do not expect it the 4 flavor case or in other realizations of QCD with a
positive measure.Comment: 17 pages, 14 figure
Thermodynamics of two-colour QCD and the Nambu Jona-Lasinio model
We investigate two-flavour and two-colour QCD at finite temperature and
chemical potential in comparison with a corresponding Nambu and Jona-Lasinio
model. By minimizing the thermodynamic potential of the system, we confirm that
a second order phase transition occurs at a value of the chemical potential
equal to half the mass of the chiral Goldstone mode. For chemical potentials
beyond this value the scalar diquarks undergo Bose condensation and the diquark
condensate is nonzero. We evaluate the behaviour of the chiral condensate, the
diquark condensate, the baryon charge density and the masses of scalar diquark,
antidiquark and pion, as functions of the chemical potential. Very good
agreement is found with lattice QCD (N_c=2) results. We also compare with a
model based on leading-order chiral effective field theory.Comment: 24 pages, 12 figure
- …