We discuss the role of an adjoint chiral condensate for color superconducting
quark matter. Its presence leads to color-flavor locking in two-flavor quark
matter. Color is broken completely as well as chiral symmetry in the two-flavor
theory with coexisting adjoint quark-antiquark and antitriplet quark-quark
condensates. The qualitative properties of this phase match the properties of
ordinary nuclear matter without strange baryons. This complements earlier
proposals by Schafer and Wilczek for a quark description of hadronic phases. We
show for a class of models with effective four-fermion interactions that
adjoint chiral and diquark condensates do not compete, in the sense that
simultaneous condensation occurs for sufficiently strong interactions in the
adjoint chiral channel.Comment: 15 pages, 3 figure