37 research outputs found

    Resveratrol Suppresses Constitutive Activation of AKT via Generation of ROS and Induces Apoptosis in Diffuse Large B Cell Lymphoma Cell Lines

    Get PDF
    BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway

    Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    Get PDF
    Resveratrol (3, 4', 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer.Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1), and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity.These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer

    Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis

    Get PDF
    BACKGROUND: It is increasingly clear that some heat shock proteins (Hsps) play a role in inflammation. Here, we report results showing participation of Hsp60 in the pathogenesis of chronic obstructive pulmonary diseases (COPD), as indicated by data from both in vivo and in vitro analyses. METHODS AND RESULTS: Bronchial biopsies from patients with stable COPD, smoker controls with normal lung function, and non-smoker controls were studied. We quantified by immunohistochemistry levels of Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, and HSF-1, along with levels of inflammatory markers. Hsp10, Hsp40, and Hsp60 were increased during progression of disease. We found also a positive correlation between the number of neutrophils and Hsp60 levels. Double-immunostaining showed that Hsp60-positive neutrophils were significantly increased in COPD patients. We then investigated in vitro the effect on Hsp60 expression in bronchial epithelial cells (16HBE) caused by oxidative stress, a hallmark of COPD mucosa, which we induced with H\u2082O\u2082. This stressor determined increased levels of Hsp60 through a gene up-regulation mechanism involving NFkB-p65. Release of Hsp60 in the extracellular medium by the bronchial epithelial cells was also increased after H\u2082O\u2082 treatment in the absence of cell death. CONCLUSIONS: This is the first report clearly pointing to participation of Hsps, particularly Hsp60, in COPD pathogenesis. Hsp60 induction by NFkB-p65 and its release by epithelial cells after oxidative stress can have a role in maintaining inflammation, e.g., by stimulating neutrophils activity. The data open new scenarios that might help in designing efficacious anti-inflammatory therapies centered on Hsp60 and applicable to COP

    Wound Healing Potential of Human Umbilical Cord Blood and Placental Membrane Derived Products

    No full text
    Wound Healing is a complex process involving hemostasis, inflammation, proliferation and maturation stages. Treatment of chronic wound is a significant challenge for clinicians and warrant urgent need for alternate therapies. Stem cell-based therapy is one of the techniques employed for wound healing but, a successful transplantation is depended upon homing, engraftment and repopulation of stem cells. Due to involvement of multiple and complex pathways the success of transplantation can be hindered. Another approach is to use the cell signaling molecules and growth factors of stem cells to regenerate the damaged site by recruiting host’s stem cells. Cellular allograft derived from umbilical cord blood and dehydrated amniotic membranes are an enriched source of cytokines and growth factors needed for activation of mesenchymal stromal cells to participate in wound healing process. Using bone marrow derived mesenchymal stromal cells as model system, we assessed the regenerative potential of BioBurst Fluid (an umbilical cord blood derived product) and Burst Binate Patch (an amniotic tissue derived product) using cellular proliferation, migration, osteogenesis and angiogenesis assays. Our data shows that the cytokines and growth factors associated with these products support biological processes involved in bone healing

    Mitochondrial function is altered in HSPB2cKO hearts under cardiac stress.

    No full text
    <p>(A) Mitochondrial respiration was measured in saponin-permeabilized cardiac fibers from HSPB2wt (sham; n = 16, TAC; n = 8) and HSPB2cKO left ventricle (sham; n = 4, TAC; n = 8) at 4 weeks after sham and TAC procedure. State2 corresponds to respiration in the absence of ADP; state 3 represents ADP-stimulated respiration and state 4 to oligomycin-inhibited respiration. State 3-respiration rate in TAC operated HSPB2cKO mice was significantly reduced compared with that in sham HSPB2cKO operated mice (P<0.05). (B) ATP production rate and (C) ATP-to-O ratios (ATP/O) were obtained from permeabilized fibers, where O refers to oxygen consumption under state 3 conditions. ATP production in TAC operated HSPB2cKO mice was significantly reduced compared with that in sham operated HSPB2cKO mice and TAC operated HSPB2wt mice (P<0.05). There was no significant difference of ATP/O between HSPB2wt and HSPB2cKO hearts in both of sham and TAC operated mice. *P<0.05compared with each sham groups. P<0.05 compared with HSPB2wt animals.</p

    Representative expression of genes involved in mitochondrial metabolism between HSPB2wt and HSPB2cKO hearts after pressure overload conditions.

    No full text
    <p>RT-qPCR was used to analyze transcript levels in mouse hearts collected 8 weeks after sham or TAC surgery. Shown here are hypoxia-inducible factor 1, alpha subunit (HIF-1α), and isocitrate dehydrognease 2 (IDH2) are involved in glycolysis; cytochrome c oxidase subunit 5B (cox5b) is involved in oxidative phosphorylation (OXPHOS); carnitine palmitoyltransferases (CPT-1β), medium-chain acyl-CoA dehydrogenase (MCAD) and mitochondrial uncoupling protein 2 (UCP2) are involved in fatty acid oxidation (FAO). *P<0.05 compared with each sham groups. P<0.05 compared with HSPB2wt animals.</p

    Loss of HSPB2 expression does not alter the cardiac hypertrophic response to transaortic constriction (TAC).

    No full text
    <p>Heart weight (HW) and body weight (BW) were measured at four weeks after TAC in HSPB2wt (grey bars) and HSPB2cKO (black bars) (A) and at eight weeks after TAC in CreTG (white bars), HSPB2wt (grey bars) and HSPB2cKO (black bars) (B). TAC induced significant cardiac hypertrophy in all experimental animals in comparison to sham-operated ones.*P<0.05 compared with each sham group. No difference was observed between the HSPB2 cardiac deficient animals and those expressing HSPB2. The number of animals analyzed in each group is indicated above the bars.</p
    corecore