581 research outputs found

    Pixel classification for automated diabetic foot diagnosis

    Get PDF
    Worldwide, more than 180 million people suffer from diabetes mellitus. Approximately 50% of these patients will develop complications to their feet. Neuropathy, combined with poor blood supply and biomechanical changes results in a high risk for foot ulcers, which is a key problem in the diabetic foot; when these wounds become infected, this can ultimately result in lower extremity amputation, which has a serious effect on the quality of life of the patient, and causes a large economic burden on society.\ud \ud This was the motivation for a collaborate project (Vincent50) in which a photographic foot imaging device was developed. The system allows scanning of the foot soles on a daily basis which may lead to early recognition of foot problems. The goal of the present study is to determine whether pixel classification is a useful intermediate step towards automatically assessing the images of the foot soles for signs of diabetic foot disease. If successful, this approach will further relief health care professionals in assessing the foot and enable the placement of more devices in the future. \ud \ud The best agreement between automated recognition and expert diagnosis was achieved with a combination of RGB and derived features, proves that the RGB data is informative with respect to detection of ulcers. However, the automatic detection of pre-signs of ulcers and other anomalies needs more sophistication than pixel classification alone. Firstly, other physical features, such as hyperspectral data, infrared and/or textural features are expected to be more informative. Secondly, we expect to be able to boost the performance by using the context between neighboring pixels. Thirdly, an individualized and normalized classification process might help with the large variability in foot soles between individuals. \u

    Torons and black hole entropy

    Get PDF
    We consider a supersymmetric system of D-5-branes compactified on a 5-torus with a self-dual background field strength on a 4-torus and carrying left-moving momentum along a circle. The corresponding supergravity solution describes a 5-dimensional black hole with a regular horizon. The entropy of this black hole may be explained in terms of the Landau degeneracy for open strings stretching between different branes. In the gauge theory approximation this D-5-brane system is described by a super Yang-Mills theory with a t'Hooft twist. By choosing a supersymmetric branch of the theory we obtain perfect agreement with the entropy formula. The result relies on the number of massless torons associated with the gauge field components that obey twisted boundary conditions.Comment: 31 pages, latex. Some equations corrected. Final version to be published in Nuclear Physics

    Cost-Effectiveness of Cancer Screening: Health and Costs in Life Years Gained

    Get PDF
    Introduction: Studies reporting on the cost-effectiveness of cancer screening usually account for quality of life losses and healthcare costs owing to cancer but do not account for future costs and quality of life losses related to competing risks. This study aims to demonstrate the impact of medical costs and quality of life losses of other diseases in the life years gained on the cost-effectiveness of U.S. cancer screening. Methods: Cost-effectiveness studies of breast, cervical, and colorectal cancer screening in the U.S. were identified using a systematic literature review. Incremental cost-effectiveness ratios of the eligible articles were updated by adding lifetime expenditures and health losses per quality-adjusted life year gained because of competing risks. This was accomplished using data on medical spending and quality of life by age and disease from the Medical Expenditure Panel Survey (2011–2015) combined with cause-deleted life tables. The study was conducted in 2018. Results: The impact of quality of life losses and healthcare expenditures of competing risks in life years gained incurred owing to screening were the highest for breast cancer and the lowest for cervical cancer. The updates suggest that incremental cost-effectiveness ratios are underestimated by 10,300–10,300–13,700 per quality-adjusted life year gained if quality of life losses and healthcare expenditures of competing risks are omitted in economic evaluations. Furthermore, cancer screening programs that were considered cost saving, were found not to be so following the inclusion of medical expenditures of competing risks. Conclusions: Practical difficulties in quantifying quality of life losses and healthcare expenditures owing to competing risks in life years gained can be overcome. Their inclusion can have a substantial impact on the cost-effectiveness of cancer screening programs

    Should cost effectiveness analyses for NICE always consider future unrelated medical costs?

    Get PDF
    When developing guidance on the use of new technologies within the NHS, NICE recommends the use of cost effectiveness. Specifically, an intervention is deemed cost effective by NICE if ‘its health benefits are greater than the opportunity costs of programmes displaced to fund the new technology, in the context of a fixed NHS budget. In other words, the general consequences for the wider group of patients in the NHS are considered alongside the effects for those patients who may directly benefit from the technology.’ We argue that the technical guidelines for health technology assessment used by NICE should change given this definition of cost effectiveness. The point at issue is the handling of “unrelated future medical costs”

    Numerical study of Yang-Mills classical solutions on the twisted torus

    Full text link
    We use the lattice cooling method to investigate the structure of some gauge fixed SU(2) Yang-Mills classical solutions of the euclidean equations of motion which are defined in the 3-torus with symmetric twisted boundary conditions.Comment: 20pp (fig.included

    Quantum Arrival and Dwell Times via Idealised Clocks

    Full text link
    A number of approaches to the problem of defining arrival and dwell time probabilities in quantum theory make use of idealised models of clocks. An interesting question is the extent to which the probabilities obtained in this way are related to standard semiclassical results. In this paper we explore this question using a reasonably general clock model, solved using path integral methods. We find that in the weak coupling regime where the energy of the clock is much less than the energy of the particle it is measuring, the probability for the clock pointer can be expressed in terms of the probability current in the case of arrival times, and the dwell time operator in the case of dwell times, the expected semiclassical results. In the regime of strong system-clock coupling, we find that the arrival time probability is proportional to the kinetic energy density, consistent with an earlier model involving a complex potential. We argue that, properly normalized, this may be the generically expected result in this regime. We show that these conclusions are largely independent of the form of the clock Hamiltonian.Comment: 19 pages, 4 figures. Published versio

    Construction of topological field theories using BV

    Full text link
    We discuss in detail the construction of topological field theories using the Batalin--Vilkovisky (BV) quantisation scheme. By carefully examining the dependence of the antibracket on an external metric, we show that differentiating with respect to the metric and the BRST charge do not commute in general. We introduce the energy momentum tensor in this scheme and show that it is BRST invariant, both for the classical and quantum BRST operators. It is antifield dependent, guaranteeing gauge independence. For topological field theories, this energy momentum has to be quantum BRST exact. This leads to conditions at each order in ℏ\hbar. As an example of this procedure, we consider topological Yang--Mills theory. We show how the reducible set of symmetries used in topological Yang--Mills can be recovered by means of trivial systems and canonical transformations. Self duality of the antighosts is properly treated by introducing an infinite tower of auxiliary fields. Finally, it is shown that the full energy momentum tensor is classically BRST exact in the antibracket sense.Comment: 15

    Isolated vacua in supersymmetric Yang-Mills theories

    Get PDF
    An explicit proof of the existence of nontrivial vacua in the pure supersymmetric Yang-Mills theories with higher orthogonal SO(N), N>=7 or the G_2 gauge group defined on a 3-torus with periodic boundary conditions is given. Extra vacuum states are separated by an energy barrier from the perturbative vacuum A_i=0 and its gauge copies.Comment: 8 pages, no figures, late

    Strong Coupling Phenomena on the Noncommutative Plane

    Get PDF
    We study strong coupling phenomena in U(1) gauge theory on the non-commutative plane. To do so, we make use of a T-dual description in terms of an N→∞N\to\infty limit of U(N) gauge theory on a commutative torus. The magnetic flux on this torus is taken to be m=N−1m=N-1, while the area scales like 1/N, keeping ΛQCD\Lambda_{QCD} fixed. With a few assumptions, we argue that the speed of high frequency light in pure non-commutative QED is modified in the non-commutative directions by the factor 1+ΛQCD4ξ21 + \Lambda_{QCD}^4 \theta^2, where ξ\theta is the non-commutative parameter. If charged flavours are included, there is an upper bound on the momentum of a photon propagating in the non-commutative directions, beyond which it is unstable against production of charged pairs. We also discuss a particular ξ→∞\theta\to\infty limit of pure non-commutative QED which is T-dual to a more conventional N→∞N\to\infty limit with m/Nm/N fixed. In the non-commutative description, this limit gives rise to an exotic theory of open strings.Comment: 24 pages, latex, 2 figures, corrected typo in eqn 6.
    • 

    corecore