333 research outputs found

    New national and regional Annex I Habitat records: from # 21 to #25

    Get PDF
    New Italian data on the distribution of the Annex I Habitats 3170*, 6110*, 91E0*, 9320, 9330 are reported in this contribution. Specifically, one new occurrence in Natura 2000 sites is presented and six new cells are added in the European Environment Agency 10 km Ă— 10 km reference grid. The new data refer to the Italian administrative regions of Sardinia, Sicily and Umbria

    Robotic Monitoring of Habitats: the Natural Intelligence Approach

    Get PDF
    In this paper, we first discuss the challenges related to habitat monitoring and review possible robotic solutions. Then, we propose a framework to perform terrestrial habitat monitoring exploiting the mobility of legged robotic systems. The idea is to provide the robot with the Natural Intelligence introduced as the combination of the environment in which it moves, the intelligence embedded in the design of its body, and the algorithms composing its mind. This approach aims to solve the challenges of deploying robots in real natural environments, such as irregular and rough terrains, long-lasting operations, and unexpected collisions, with the final objective of assisting humans in assessing the habitat conservation status. Finally, we present examples of robotic monitoring of habitats in four different environments: forests, grasslands, dunes, and screes

    New national and regional Annex I Habitat records: From #37 to #44

    Get PDF
    In this contribution, Italian new data concerning the distribution of the Annex I Habitats 3150, 3170*, 3260, 4090, 91L0, 91M0, 9340 are reported. In detail, 20 new occurrences in Natura 2000 sites are presented and 30 new cells are added in the EEA 10 km Ă— 10 km reference grid. The new data refer to the Italian administrative regions of Campania, Lazio, Sardinia, Sicily, Tuscany, and Umbria

    The Wikiplantbase project: the role of amateur botanists in building up large online floristic databases

    Get PDF
    The Wikiplantbase project, started in 2013, provides a framework where the full set of georeferenced floristic records of Tuscany and Sardinia can be entered, stored, updated and freely accessed through the Internet. Mainly thanks to the collaboration of amateur botanists, data have accumulated quickly. All records entered by collaborators are submitted to the project coordinators, who are enabled to accept, modify, or reject them. As of 22 November 2016, Wikiplantbase #Toscana holds 116,402 verified floristic records (90% based on published literature, 5% on unpublished herbarium specimens, 5% on field observations), and Wikiplantbase #Sardegna 40,043 (77% published literature, 18% unpublished herbarium specimens, 5% on field observations ). The records include over 90% of the specific and subspecific taxa known for Tuscany and about 70% – but rapidly growing – of those known for Sardinia. The most recorded species are Quercus ilex L. (Fagaceae) for Tuscany and Pistacia lentiscus L. (Anacardiaceae) for Sardinia. With minor software tweaking, the online platform Wikiplantbase might be adopted in other contexts, resulting in a well connected network of regional floristic databases suited to exploit the involvement – still largely untapped – of nonacademic collaborators, as advocated by citizen science

    Testing an expanded set of sustainable forest management indicators in Mediterranean coppice area

    Get PDF
    Although coppice forests represent a significant part of the European forest area, especially across southern Countries, they received little attention within the Sustainable Forest Management (SFM) processes and scenarios, whose guidelines have been mainly designed to high forests and national scale. In order to obtain “tailored” information on the degree of sustainability of coppices on the scale of the stand, we evaluated (i) whether the main coppice management options result in different responses of the SFM indicators, and (ii) the degree to which the considered SFM indicators were appropriate in their application at stand level. The study considered three different management options (Traditional Coppice TC, coppice under Natural Evolution NE, and coppice under Conversion to high forest by means of periodical thinning CO). In each of the 43 plots considered in the study, which covered three different European Forest Types, we applied a set of eighteen “consolidated” SFM indicators, covering all the six SFM Criteria (FOREST EUROPE, 2020) and, additionally, tested other sixteen novel indicators shaped for agamic forests and/or applicable at stand level. Results confirmed that several consolidated indicators related to resources status (Growing stock and Carbon stock), health (Defoliation and Forest damage), and socio-economic functions (Net revenue, Energy and Accessibility) were highly appropriate for evaluating the sustainability of coppice at stand level. In addition, some novel indicators related to resources status (Total above ground tree biomass), health (Stand growth) and protective functions (Overstorey cover and Understorey cover) proved to be highly appropriate and able to support the information obtained by the consolidated ones. As a consequence, a subset of consolidated SFM indicators, complemented with the most appropriate novel ones, may represent a valid option to support the evaluation of coppice sustainability at stand level. An integrated analysis of the SFM indicators showed that NE and CO display significant higher environmental performances as compared with TC. In addition, CO has positive effects also on socio-economic issues, while TC -which is an important cultural heritage and a silvicultural option that may help to keep local communities engaged in forestry – combines high wood harvesting rates with dense understory cover. Overall, each of the three management options showed specific sustainability values; as a consequence, their coexistence at a local scale and in accordance with the specific environmental conditions and the social-economic context, is greatly recommended since it may fulfill a wider array of sustainability issue

    Testing an expanded set of sustainable forest management indicators in Mediterranean coppice area

    Get PDF
    Although coppice forests represent a significant part of the European forest area, especially across southern Countries, they received little attention within the Sustainable Forest Management (SFM) processes and scenarios, whose guidelines have been mainly designed to high forests and national scale. In order to obtain “tailored” information on the degree of sustainability of coppices on the scale of the stand, we evaluated (i) whether the main coppice management options result in different responses of the SFM indicators, and (ii) the degree to which the considered SFM indicators were appropriate in their application at stand level. The study considered three different management options (Traditional Coppice TC, coppice under Natural Evolution NE, and coppice under Conversion to high forest by means of periodical thinning CO). In each of the 43 plots considered in the study, which covered three different European Forest Types, we applied a set of eighteen “consolidated” SFM indicators, covering all the six SFM Criteria (FOREST EUROPE, 2020) and, additionally, tested other sixteen novel indicators shaped for agamic forests and/or applicable at stand level. Results confirmed that several consolidated indicators related to resources status (Growing stock and Carbon stock), health (Defoliation and Forest damage), and socio-economic functions (Net revenue, Energy and Accessibility) were highly appropriate for evaluating the sustainability of coppice at stand level. In addition, some novel indicators related to resources status (Total above ground tree biomass), health (Stand growth) and protective functions (Overstorey cover and Understorey cover) proved to be highly appropriate and able to support the information obtained by the consolidated ones. As a consequence, a subset of consolidated SFM indicators, complemented with the most appropriate novel ones, may represent a valid option to support the evaluation of coppice sustainability at stand level. An integrated analysis of the SFM indicators showed that NE and CO display significant higher environmental performances as compared with TC. In addition, CO has positive effects also on socio-economic issues, while TC -which is an important cultural heritage and a silvicultural option that may help to keep local communities engaged in forestry – combines high wood harvesting rates with dense understory cover. Overall, each of the three management options showed specific sustainability values; as a consequence, their coexistence at a local scale and in accordance with the specific environmental conditions and the social-economic context, is greatly recommended since it may fulfill a wider array of sustainability issues

    The Wikiplantbase project: the role of amateur botanists in building up large online floristic databases

    Get PDF
    The Wikiplantbase project, started in 2013, provides a framework where the full set of georeferenced floristic records of Tuscany and Sardinia can be entered, stored, updated and freely accessed through the Internet. Mainly thanks to the collaboration of amateur botanists, data have accumulated quickly. All records entered by collaborators are submitted to the project coordinators, who are enabled to accept, modify, or reject them. As of 22 November 2016, Wikiplantbase #Toscana holds 116,402 verified floristic records (90% based on published literature, 5% on unpublished herbarium specimens, 5% on field observations), and Wikiplantbase #Sardegna 40,043 (77% published literature, 18% unpublished herbarium specimens, 5% on field observations ). The records include over 90% of the specific and subspecific taxa known for Tuscany and about 70% – but rapidly growing – of those known for Sardinia. The most recorded species are Quercus ilex L. (Fagaceae) for Tuscany and Pistacia lentiscus L. (Anacardiaceae) for Sardinia. With minor software tweaking, the online platform Wikiplantbase might be adopted in other contexts, resulting in a well connected network of regional floristic databases suited to exploit the involvement – still largely untapped – of nonacademic collaborators, as advocated by citizen science
    • …
    corecore