313 research outputs found

    Conformal symmetry and light flavor baryon spectra

    Full text link
    The degeneracy among parity pairs systematically observed in the N and Delta spectra is interpreted to hint on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS_5/CFT_4. The case is made by showing that all the observed N and Delta resonances with masses below 2500 MeV distribute fairly well each over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on the AdS_5 cone, conformally compactified to R^1*S^3. The free geodesic motion on the S^3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon type. The equation is then gauged by the "curved" Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, while the remaining states belonging to same level remain practically degenerate. The model describes the correct mass ordering in the P11-S11 pairs through the nucleon spectrum as a combined effect of the above conformal symmetry breaking, on the one side, and a parity change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The quality of the wave functions is illustrated by calculations of realistic mean-square charge radii and electric charge form-factors on the examples of the proton, and the protonic P11(1440), and S11(1535) resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is finite in the infrared and tends to zero at infinity.Comment: Latex, 5 figures, 2 tables; Paper upgraded in accord with the published version. Discussion on the meson sector include

    Searching for degeneracies of real Hamiltonians using homotopy classification of loops in SO(nn)

    Full text link
    Topological tests to detect degeneracies of Hamiltonians have been put forward in the past. Here, we address the applicability of a recently proposed test [Phys. Rev. Lett. {\bf 92}, 060406 (2004)] for degeneracies of real Hamiltonian matrices. This test relies on the existence of nontrivial loops in the space of eigenbases SO(n)(n). We develop necessary means to determine the homotopy class of a given loop in this space. Furthermore, in cases where the dimension of the relevant Hilbert space is large the application of the original test may not be immediate. To remedy this deficiency, we put forward a condition for when the test is applicable to a subspace of Hilbert space. Finally, we demonstrate that applying the methodology of [Phys. Rev. Lett. {\bf 92}, 060406 (2004)] to the complex Hamiltonian case does not provide any new information.Comment: Minor changes, journal reference adde

    Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets

    Full text link
    In this paper we study the boundary limit properties of harmonic functions on R+×K\mathbb R_+\times K, the solutions u(t,x)u(t,x) to the Poisson equation ∂2u∂t2+Δu=0, \frac{\partial^2 u}{\partial t^2} + \Delta u = 0, where KK is a p.c.f. set and Δ\Delta its Laplacian given by a regular harmonic structure. In particular, we prove the existence of nontangential limits of the corresponding Poisson integrals, and the analogous results of the classical Fatou theorems for bounded and nontangentially bounded harmonic functions.Comment: 22 page

    From chemical Langevin equations to Fokker-Planck equation: application of Hodge decomposition and Klein-Kramers equation

    Full text link
    The stochastic systems without detailed balance are common in various chemical reaction systems, such as metabolic network systems. In studies of these systems, the concept of potential landscape is useful. However, what are the sufficient and necessary conditions of the existence of the potential function is still an open problem. Use Hodge decomposition theorem in differential form theory, we focus on the general chemical Langevin equations, which reflect complex chemical reaction systems. We analysis the conditions for the existence of potential landscape of the systems. By mapping the stochastic differential equations to a Hamiltonian mechanical system, we obtain the Fokker-Planck equation of the chemical reaction systems. The obtained Fokker-Planck equation can be used in further studies of other steady properties of complex chemical reaction systems, such as their steady state entropies.Comment: 6 pages, 0 figure, submitted to J. Phys. A: Math. Theo

    On the exact solubility in momentum space of the trigonometric Rosen-Morse potential

    Full text link
    The Schrodinger equation with the trigonometric Rosen-Morse potential in flat three dimensional Euclidean space, E3, and its exact solutions are shown to be also exactly transformable to momentum space, though the resulting equation is purely algebraic and can not be cast into the canonical form of an integral Lippmann-Schwinger equation. This is because the cotangent function does not allow for an exact Fourier transform in E3. In addition we recall, that the above potential can be also viewed as an angular function of the second polar angle parametrizing the three dimensional spherical surface, S3, of a constant radius, in which case the cotangent function would allow for an exact integral transform to momentum space. On that basis, we obtain a momentum space Lippmann-Schwinger-type equation, though the corresponding wavefunctions have to be obtained numerically.Comment: 10 pages, 5 figure

    Scaling Limits for Internal Aggregation Models with Multiple Sources

    Full text link
    We study the scaling limits of three different aggregation models on Z^d: internal DLA, in which particles perform random walks until reaching an unoccupied site; the rotor-router model, in which particles perform deterministic analogues of random walks; and the divisible sandpile, in which each site distributes its excess mass equally among its neighbors. As the lattice spacing tends to zero, all three models are found to have the same scaling limit, which we describe as the solution to a certain PDE free boundary problem in R^d. In particular, internal DLA has a deterministic scaling limit. We find that the scaling limits are quadrature domains, which have arisen independently in many fields such as potential theory and fluid dynamics. Our results apply both to the case of multiple point sources and to the Diaconis-Fulton smash sum of domains.Comment: 74 pages, 4 figures, to appear in J. d'Analyse Math. Main changes in v2: added "least action principle" (Lemma 3.2); small corrections in section 4, and corrected the proof of Lemma 5.3 (Lemma 5.4 in the new version); expanded section 6.

    Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    Full text link
    In this paper we define direct product of graphs and give a recipe for obtained probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph obtain by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determine probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product cayley graphs (complete cycle, complete KnK_n, charter and nn-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t⟶∞t\longrightarrow \infty but for quantum state is not always satisfy.Comment: 21, page. Accepted for publication on CT

    Uniform algebras and approximation on manifolds

    Full text link
    Let Ω⊂Cn\Omega \subset \mathbb{C}^n be a bounded domain and let A⊂C(Ωˉ)\mathcal{A} \subset \mathcal{C}(\bar{\Omega}) be a uniform algebra generated by a set FF of holomorphic and pluriharmonic functions. Under natural assumptions on Ω\Omega and FF we show that the only obstruction to A=C(Ωˉ)\mathcal{A} = \mathcal{C}(\bar{\Omega}) is that there is a holomorphic disk D⊂ΩˉD \subset \bar{\Omega} such that all functions in FF are holomorphic on DD, i.e., the only obstruction is the obvious one. This generalizes work by A. Izzo. We also have a generalization of Wermer's maximality theorem to the (distinguished boundary of the) bidisk

    Weighted Banach spaces of harmonic functions

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s13398-012-0109-z."We study Banach spaces of harmonic functions on open sets of or endowed with weighted supremum norms. We investigate the harmonic associated weight defined naturally as the analogue of the holomorphic associated weight introduced by Bierstedt, Bonet, and Taskinen and we compare them. We study composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions characterizing the continuity, the compactness and the essential norm of composition operators among these spaces in terms of associated weights.The research of the first author was partially supported by MEC and FEDER Project MTM2010-15200 and by GV project ACOMP/2012/090.Jorda Mora, E.; Zarco García, AM. (2014). Weighted Banach spaces of harmonic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 108(2):405-418. https://doi.org/10.1007/s13398-012-0109-zS4054181082Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, Berlin (2001)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Mich. Math. J. 40(2), 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127(2), 137–168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993)Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999)Bonet, J., Domański, P., Lindström, M.: Weakly compact composition operators on weighted vector-valued Banach spaces of analytic mappings. Ann. Acad. Sci. Fenn. Math. Ser. A I 26, 233–248 (2001)Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 64, 101–118 (1998)Bonet, J., Friz, M., Jordá, E.: Composition operators between weighted inductive limits of spaces of holomorphic functions. Publ. Math. Debr. Ser. A 67, 333–348 (2005)Boyd, C., Rueda, P.: The v-boundary of weighted spaces of holomorphic functions. Ann. Acad. Sci. Fenn. Math. 30, 337–352 (2005)Boyd, C., Rueda, P.: Complete weights and v-peak points of spaces of weighted holomorphic functions. Isr. J. Math. 155, 57–80 (2006)Boyd, C., Rueda, P.: Isometries of weighted spaces of harmonic functions. Potential Anal. 29(1), 37–48 (2008)Carando, D., Sevilla-Peris, P.: Spectra of weighted algebras of holomorphic functions. Math. Z. 263, 887–902 (2009)Contreras, M.D., Hernández-Díaz, G.: Weighted composition operators in weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 69(1), 41–60 (2000)García, D., Maestre, M., Rueda, P.: Weighted spaces of holomorphic functions on Banach spaces. Stud. Math. 138(1), 1–24 (2000)García, D., Maestre, M., Sevilla-Peris, P.: Composition operators between weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci. Fenn. Math. 29, 81–98 (2004)Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. AMS Chelsea Publishing, Providence (2009)Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs (1962)Krantz, S.G.: Function Theory of Several Complex Variables. AMS, Providence (2001)Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19–45 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, Oxford (1997)Montes-Rodríguez, A.: Weight composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(2), 872–884 (2000)Ng, K.F.: On a theorem of Diximier. Math. Scand. 29, 279–280 (1972)Rudin, W.: Real and Complex Analysis. MacGraw-Hill, NY (1970)Rudin, W.: Functional analysis. In: International series in pure and applied mathematics, 2nd edn. McGraw-Hill, Inc., New York (1991)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299(300), 256–279 (1978)Shields, A.L., Williams, D.L.: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29, 3–25 (1982)Zheng, L.: The essential norms and spectra of composition operators on H∞H^\infty . Pac. J. Math. 203(2), 503–510 (2002
    • …
    corecore