581 research outputs found

    Can one reconstruct masked CMB sky?

    Full text link
    The CMB maps obtained by observations always possess domains which have to be masked due to severe uncertainties with respect to the genuine CMB signal. Cosmological analyses ideally use full CMB maps in order to get e.g. the angular power spectrum. There are attempts to reconstruct the masked regions at least at low resolutions, i.e. at large angular scales, before a further analysis follows. In this paper, the quality of the reconstruction is investigated for the ILC (7yr) map as well as for 1000 CMB simulations of the LambdaCDM concordance model. The latter allows an error estimation for the reconstruction algorithm which reveals some drawbacks. The analysis points to errors of the order of a significant fraction of the mean temperature fluctuation of the CMB. The temperature 2-point correlation function C(theta) is evaluated for different reconstructed sky maps which leads to the conclusion that it is safest to compute it on the cut-sky

    Cosmic Topology of Polyhedral Double-Action Manifolds

    Full text link
    A special class of non-trivial topologies of the spherical space S^3 is investigated with respect to their cosmic microwave background (CMB) anisotropies. The observed correlations of the anisotropies on the CMB sky possess on large separation angles surprising low amplitudes which might be naturally be explained by models of the Universe having a multiconnected spatial space. We analysed in CQG 29(2012)215005 the CMB properties of prism double-action manifolds that are generated by a binary dihedral group D^*_p and a cyclic group Z_n up to a group order of 180. Here we extend the CMB analysis to polyhedral double-action manifolds which are generated by the three binary polyhedral groups (T^*, O^*, I^*) and a cyclic group Z_n up to a group order of 1000. There are 20 such polyhedral double-action manifolds. Some of them turn out to have even lower CMB correlations on large angles than the Poincare dodecahedron

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    Cosmic microwave anisotropies in an inhomogeneous compact flat universe

    Full text link
    The anisotropies of the cosmic microwave background (CMB) are computed for the half-turn space E_2 which represents a compact flat model of the Universe, i.e. one with finite volume. This model is inhomogeneous in the sense that the statistical properties of the CMB depend on the position of the observer within the fundamental cell. It is shown that the half-turn space describes the observed CMB anisotropies on large scales better than the concordance model with infinite volume. For most observer positions it matches the temperature correlation function even slightly better than the well studied 3-torus topology

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Sustainable product development strategies: Business planning and performance implications

    Get PDF
    Copyright © 2012 by Institution of Mechanical Engineers. This is the author's accepted manuscript. The final published article is available from the link below.Manufacturing firms are under many financial and competitive pressures which focus attention on the performance of their manufacturing processes. In this paper the opportunities for improving the environmental impact of products within the constraints of existing manufacturing infrastructure are examined. Approaches which support sustainability in two aspects are proposed, firstly, the provision of products to the users in ways which extend the product life and secondly, manufacturing approaches which reduce resource usage. This paper outlines three different sustainable development strategies for different product types and describes the cost implications for manufacturers across the life-cycle. The performance measures affected by these strategies are examined drawing on product development case studies from a number of high technology sectors to highlight the different approaches taken. The results are intended to aid manufacturers during the earliest stages of business planning to consider alternative product development approaches which are more sustainable

    Hot pixel contamination in the CMB correlation function?

    Full text link
    Recently, it was suggested that the map-making procedure, which is applied to the time-ordered CMB data by the WMAP team, might be flawed by hot pixels. This could lead to a bias in the pixels having an angular distance of about 141 degrees from hot pixels due to the differential measuring process of the satellite WMAP. Here, the bias is confirmed, and the temperature two-point correlation function C(theta) is reevaluated by excluding the affected pixels. It is shown that the most significant effect occurs in C(theta) at the largest angles near theta = 180 degrees. Furthermore, the corrected correlation function C(theta) is applied to the cubic topology of the Universe, and it is found that such a multi-connected universe matches the temperature correlation better than the LCDM concordance model, provided the cubic length scale is close to L=4 measured in units of the Hubble length

    The Topology and Size of the Universe from the Cosmic Microwave Background

    Full text link
    We study the possibility that the universe has compact topologies T^3, T^2 x R^1, or S^1 x R^2 using the seven-year WMAP data. The maximum likelihood 95% confidence intervals for the size L of the compact direction are 1.7 < L/L_0 < 2.1, 1.8 < L/L_0 < 2.0, 1.2 < L/L_0 < 2.1 for the three cases, respectively, where L_0=14.4 Gpc is the distance to the last scattering surface. An infinite universe is compatible with the data at 4.3 sigma. We find using a Bayesian analysis that the most probable universe has topology T^2 x R^1, with L/L_0=1.9.Comment: Additional checks, Monte-Carlo skies, and study of dipole contamination added. References added. 13 pages, 11 figure

    Cosmic Topology of Prism Double-Action Manifolds

    Full text link
    The cosmic microwave background (CMB) anisotropies in spherical 3-spaces with a non-trivial topology are studied. This paper discusses the special class of the so-called double-action manifolds, which are for the first time analysed with respect to their CMB anisotropies. The CMB anisotropies are computed for all prism double-action manifolds generated by a binary dihedral and a cyclic group with a group order of up to 180 leading to 33 different topologies. Several spaces are found which show a suppression of the CMB anisotropies on large angular distances as it is found on the real CMB sky. It turns out that two of these spaces possess Dirichlet domains which are not very far from highly symmetric polyhedra like Platonic or Archimedean ones
    • …
    corecore